

Huawei Big Data Certification Training

HCIA-Big Data
Lab Guide for Big Data

Engineers

ISSUE:3.0

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of
their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made
between Huawei and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided "AS IS" without warranties,
guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has
been made in the preparation of this document to ensure accuracy of the contents, but
all statements, information, and recommendations in this document do not constitute
a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://e.huawei.com

http://e.huawei.com/

Huawei Certificate System
Huawei Certification follows the "platform + ecosystem" development strategy,

which is a new collaborative architecture of ICT infrastructure based on "Cloud-Pipe-
Terminal". Huawei has set up a complete certification system consisting of three
categories: ICT infrastructure certification, Platform and Service certification and ICT
vertical certification, and grants Huawei certification the only all-range technical
certification in the industry.
 Huawei offers three levels of certification: Huawei Certified ICT Associate (HCIA),
Huawei Certified ICT Professional (HCIP), and Huawei Certified ICT Expert (HCIE).

Huawei Certified ICT Associate-Big Data (HCIA-Big Data) is designed for train and
certify engineers who are capable of using Huawei MRS big data development
platform.

The HCIA-Big Data certificate system introduces you the technical principles and
architectures of common and important big data components, and enables you to
stand atop the Big Data frontiers.

HCIA-Big Data V3.0 Lab Guide Page 1

Contents

1 About This Document ... 4

1.1 Introduction .. 4

1.2 Content Description ... 4

1.3 Precautions ... 4

1.4 References ... 4

1.5 MRS Architecture .. 5

2 HDFS Practice ... 6

2.1 Background ... 6

2.2 Objectives .. 6

2.3 Tasks ... 6

2.3.1 Task 1: Understating Common HDFS Commands .. 6

2.3.2 Task 2: Using the Recycle Bin ... 15

2.4 Summary ... 15

3 Hive Data Warehouse Practice... 16

3.1 Background ... 16

3.2 Objectives .. 16

3.3 Tasks ... 16

3.3.1 Task 1: Creating Hive Tables .. 16

3.3.2 Task 3: Performing Basic Hive Queries ... 18

3.3.3 Task 3: Performing Hive Join Operations ... 22

3.3.4 Task 4: Using Hue to Execute HQL .. 29

3.4 Summary ... 34

4 HBase Columnar Database Practice ... 35

4.1 Background ... 35

4.2 Objectives .. 35

4.3 Tasks ... 35

4.3.1 Task 1: Performing Common HBase Operations .. 35

4.3.2 Task 2: Pre-splitting Regions During Table Creation ... 41

4.3.3 Task 3: Using Filters ... 45

4.4 Summary ... 45

5 MapReduce Data Processing Practice .. 46

5.1 Background ... 46

5.2 Objectives .. 46

5.3 Tasks ... 46

HCIA-Big Data V3.0 Lab Guide Page 2

5.3.1 Task 1: MapReduce Shell Practice .. 46

5.3.1 (Optional) Task 2: MapReduce Java Practice: Collecting Statistics on Online Duration 51

5.4 Summary ... 56

6 Spark Memory Computing Practice .. 57

6.1 Background ... 57

6.2 Objectives .. 57

6.3 Tasks ... 57

6.3.1 Task 1: Spark RDD Programming ... 57

6.3.2 Task 2: RDD Shell Operations .. 59

6.3.3 (Optional) Task 3: RDD Code Programming — Java Programming ... 66

6.3.4 Task 4: Spark SQL DataFrame Programming ... 69

6.3.5 Task 5: Spark SQL DataSet Programming ... 76

6.4 Summary ... 78

7 Flink Real-Time Processing System Practice... 79

7.1 Background ... 79

7.2 Objectives .. 79

7.3 Tasks ... 79

7.3.1 Task 1: Importing a Flink Sample Project .. 79

7.3.2 Task 2: Exercising the Asynchronous CheckPoint Mechanism ... 80

7.3.3 Task 3: Obtaining Top N Hot-Selling Offerings in Flink in Real Time .. 89

7.4 Summary ... 96

8 Kafka Message Subscription Practice ... 97

8.1 Background ... 97

8.2 Objectives .. 97

8.3 Tasks ... 97

8.3.1 Task 1: Producing and Consuming Kafka Messages on the Shell Side ... 97

8.3.2 Task 2: Using Kafka Consumer Groups... 99

8.4 Summary .. 104

9 Flume Data Collection Practice ... 105

9.1 Background .. 105

9.2 Objectives ... 105

9.3 Tasks .. 105

9.3.1 Task 1: Installing the Flume Client .. 105

9.3.2 Task 2: Using SpoolDir to Collect and Upload Data to HDFS ... 110

9.3.3 Task 3: Using SpoolDir to Collect and Upload Data to Kafka ... 120

9.4 Summary .. 123

10 Loader Data Import and Export Practice ... 124

10.1 Background ... 124

HCIA-Big Data V3.0 Lab Guide Page 3

10.2 Objectives... 124

10.3 Tasks .. 124

10.3.1 Task 1: Preparing MySQL Data .. 124

10.3.2 Task 2: Configuring the MySQL Driver of Loader ... 129

10.3.3 Task 3: Creating a Loader Link ... 133

10.3.4 Task 4: Importing MySQL Data to HDFS .. 139

10.3.5 Task 5: Importing MySQL Data to Hive .. 142

10.3.6 Task 6: Importing HDFS Data to HBase .. 146

10.4 Summary .. 149

11 Comprehensive Exercise: Hive Data Warehouse .. 150

11.1 Background ... 150

11.2 Objectives... 150

11.3 Tasks .. 150

11.3.1 Preparing MySQL Data .. 150

11.3.2 Importing MySQL Data to Hive ... 154

11.3.3 Processing Hive Data ... 158

11.3.4 Importing HDFS Data to HBase ... 159

11.3.5 Querying Data in HBase in Real Time ... 162

11.4 Summary .. 164

12 Appendix: Environment Preparations and Commands... 165

12.1 (Optional) Preparing the Java Environment ... 165

12.1.1 Installing JDK .. 165

12.1.2 Installing Apache Maven .. 170

12.1.3 Installing Eclipse .. 172

12.1.4 Importing an MRS 2.0 Sample Project to Eclipse .. 175

12.2 Binding an EIP to an ECS ... 183

12.3 Viewing the IP address of ZooKeeper ... 186

12.4 Viewing the IP Address of a Kafka Broker Instance ... 188

12.5 Common Linux Commands ... 189

12.6 HDFS Commands .. 190

12.7 Yarn Application Operation Commands ... 191

HCIA-Big Data V3.0 Lab Guide Page 4

1 About This Document

1.1 Introduction
This document uses HUAWEI CLOUD MapReduce Service (MRS) as the exercise
environment to guide trainees through related tasks and help them understand how to
use big data components of MRS.

1.2 Content Description
This document consists of eight exercises and illustrates how to use important big data
components.

The exercises include HUAWEI CLOUD MRS application practice, HDFS practice, Loader
data import and export practice, Flume data collection practice, Kafka message
subscription practice, Hive data warehouse practice, HBase database practice, and
comprehensive cluster practice.

1.3 Precautions
A HUAWEI CLOUD account and real-name authentication are required.

It is recommended that each trainee uses one exercise environment so that they do not
affect each other.

1.4 References
To obtain the MapReduce help documents, visit https://support.huaweicloud.com/intl/en-
us/mrs/index.html.

https://support.huaweicloud.com/intl/en-us/mrs/index.html
https://support.huaweicloud.com/intl/en-us/mrs/index.html

HCIA-Big Data V3.0 Lab Guide Page 5

1.5 MRS Architecture

Figure 1-1

HCIA-Big Data V3.0 Lab Guide Page 6

2 HDFS Practice

2.1 Background
HDFS is the basis of big data components. Hive data, MapReduce and Spark computing
data, and regions of HBase are all stored in HDFS. On the HDFS shell client, you can
perform various operations, such as uploading, downloading, and deleting data, and
managing file systems. Learning HDFS will help you better understand and master big
data knowledge.

2.2 Objectives
 Understand command HDFS operations.

 Understand HDFS management operations.

2.3 Tasks

2.3.1 Task 1: Understating Common HDFS Commands
Run the following command to set environment variables before running commands to
operate the MRS components:

source /opt/client/bigdata_env

Step 1 Run the help command.

This command is used to view the command help document.

hdfs dfs -help

HCIA-Big Data V3.0 Lab Guide Page 7

Figure 2-1

Check how to use the ls command.

hdfs dfs -help ls

Figure 2-2

Step 2 Run the ls command.

This command is used to display the directory information.

hdfs dfs -ls /

HCIA-Big Data V3.0 Lab Guide Page 8

Figure 2-3

Step 3 Run the mkdir command.

This command is used to create directories in HDFS.

To create the stu01 folder in the user folder of the root directory, view the content in the
user folder, create the folder, and then run the ls command. The stu01 folder is displayed.

hdfs dfs -mkdir /user/stu01

Figure 2-4

Step 4 Run the put command.

This command is used to upload a file in the Linux system to a specified HDFS directory.
Before executing this command, run the following command to edit a file in a local Linux
host:

vi stu01.txt

Figure 2-5

Press i to enter the editing mode, enter the content, and press Esc. Then, press Shift and
a colon (:), and enter wq to save the settings and exit. The following is a file content
example:

HCIA-Big Data V3.0 Lab Guide Page 9

Figure 2-6

Run the hdfs dfs -put stu01.txt /user/stu01/ command to upload the file.

Figure 2-7

Run the ls command to check whether the stu01.txt file has been uploaded to the
/user/stu01 directory.

Step 5 Run the cat command.

This command is used to display the file content.

hdfs dfs -cat /user/stu01/stu01.txt

Figure 2-8

Step 6 Run the text command.

This command is used to show the content of a file in character format.

hdfs dfs -text /user/stu01/stu01.txt

Figure 2-9

Step 7 Run the moveFromLocal command.

This command is used to cut and paste data from the local PC to HDFS.

HCIA-Big Data V3.0 Lab Guide Page 10

Run the vi command to create a data file, for example, stu01_2.txt, on a local Linux host.
The following figure shows the content of the file.

Figure 2-10

Run the following command:

hdfs dfs -moveFromLocal stu01_2.txt /user/stu01/

Figure 2-11

The stu01_2.txt file has been uploaded to the /user/stu01 directory on the HDFS. Run the
ls command to check the Linux local host. The stu01_2.txt file does not exist, indicating
that the file is cut and pasted to the destination HDFS directory. Comparatively, after the
put command is executed, the local file is only copied to the HDFS and still exists on the
Linux host.

Step 8 Run the appendToFile command.

This command is used to add a file to the end of an existing file.

Run the vi command to edit data file stu01_3.txt on a local Linux host. The file content is
as follows:

Figure 2-12

Run the following command:

hdfs dfs -appendToFile stu01_3.txt /user/stu01/stu01_2.txt

Add the content of the stu01_3.txt file to the stu01_2.txt file in the HDFS.

Run the cat command to view the result. The following information is displayed:

HCIA-Big Data V3.0 Lab Guide Page 11

Figure 2-13

Step 9 Run the cp command.

This command is used to copy a file from one HDFS path to another HDFS path.

Run the vi command to edit the stu01_4.txt file on a local Linux host, and run the put
command to upload the file to the HDFS root directory, as shown in the following figure:

Figure 2-14

Run the hdfs dfs -cp /stu01_4.txt /user/stu01/ command.

Figure 2-15

The stu01_4.txt file exists in the /user/stu01 directory and the root directory.

Step 10 Run the mv command.

This command is used to move files in the HDFS directory.

Run the vi command to edit the stu01_5.txt file on the local Linux host, and run the put
command to upload the file to the HDFS root directory, as shown in the following figure:

HCIA-Big Data V3.0 Lab Guide Page 12

Figure 2-16

Run the hdfs dfs -mv /stu01_5.txt /user/stu01/ command.

Figure 2-17

The stu01_5.txt file exists in the /user/stu01 folder, but it has been removed from the
root directory.

Step 11 Run the get command.

Similar to copyToLocal, this command is used to download files from the HDFS to a local
host.

Delete the stu01_5.txt file from the Linux host.

Figure 2-18

Run the hdfs dfs -copyToLocal /user/stu01/stu01_5.txt command.

HCIA-Big Data V3.0 Lab Guide Page 13

Figure 2-19

The stu01_5.txt file exists on the Linux host.

Note the period at the end of the HDFS command, which indicates the current directory.
If you specify another directory, you can specify the path for saving the file.

Step 12 Run the getmerge command.

This command is used to download a combination of multiple files.

Run the ls to view the files in the /user/stu01/ directory.

Figure 2-20

Run the hdfs dfs -getmerge /user/stu01/* ./merge.txt command.

Figure 2-21

The merge.txt file is generated in the current directory. The content in the file is a
combination of the files in /user/stu01/.

Step 13 Run the rm command.

This command is used to delete an HDFS file or folder.

Run the hdfs dfs -rm /user/stu01/stu01_5.txt command.

HCIA-Big Data V3.0 Lab Guide Page 14

Figure 2-22

The stu01_5.txt file does not exist in /user/stu01/.

Step 14 Run the df command.

This command is used to collect information on the available space of a file system.

Run the hdfs dfs -df -h / command.

Figure 2-23

Step 15 Run the du command.

This command is used to collect information on the folder size.

Run the hdfs dfs -du -s -h /user/stu01 command.

Figure 2-24

Step 16 Run the count command.

This command is used to collect information on the number of file nodes in a specified
directory.

Run the hdfs dfs -count -v /user/stu01 command.

Figure 2-25

HCIA-Big Data V3.0 Lab Guide Page 15

2.3.2 Task 2: Using the Recycle Bin
Files may be deleted by mistake in daily work. In this case, you can find the deleted files
in the recycle bin of HDFS. By default, the deleted files are retained in the recycle bin for
seven days. For example, after the /user/stu01/stu01_5.txt file is deleted, the stu01_5.txt
file is moved to the recycle bin

Run the hdfs dfs -ls /user/root/.Trash/Current/user/stu01/ command.

The stu01_5.txt file in the recycle bin is displayed.

Figure 2-26

Note that deleted data is retained for seven days by default.

Run the mv command to move the file back to the /user/stu01/ directory.

hdfs dfs -mv /user/root/.Trash/Current/user/stu01/stu01_5.txt /user/stu01

Figure 2-27

2.4 Summary
This exercise mainly describes common operations on HDFS. After completing this
exercise, you will be able to perform common HDFS operations.

HCIA-Big Data V3.0 Lab Guide Page 16

3 Hive Data Warehouse Practice

3.1 Background
Hive is a data warehouse tool and plays an important role in data mining, data
aggregation, and statistics analysis. In telecom services, Hive can be used to collect
statistics on users' data usage and phone bills, and mine user consumption models to
help carriers better design packages.

3.2 Objectives
 Understand common Hive operations.

 Learn how to run HQL on Hue.

3.3 Tasks

3.3.1 Task 1: Creating Hive Tables
3.3.1.1 Viewing Statements for Creating Tables

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
 [(col_name data_type [COMMENT col_comment], ...)]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
 [CLUSTERED BY (col_name, col_name, ...)
 [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
 [ROW FORMAT row_format]
 [STORED AS file_format]
 [LOCATION hdfs_path]

3.3.1.2 Creating Database Tables
Set environment variable using source /opt/client/bigdata_env.

Enter beeline and press Enter to go to Hive.

Note that all statements in Hive must end with a semicolon (;). Otherwise, the
statements cannot be executed.

Reference: Run the following command to filter the output of INFO logs:

beeline --hiveconf hive.server2.logging.operation.level=NONE

HCIA-Big Data V3.0 Lab Guide Page 17

Figure 3-1

Statement for creating database tables (If multiple users share the same environment, it
is recommended that the name of each table contain the first letters of the user's last
and first names to differentiate tables.)

create table cx_stu01(name string,gender string ,age int) row format delimited fields terminated by ','
stored as textfile;

Figure 3-2

The show tables command is used to display all tables.

3.3.1.3 Creating Foreign Tables
Run the following command:

create external table cx_stu02(name string,gender string ,age int) row format delimited fields
terminated by ',' stored as textfile ;

Figure 3-3

3.3.1.4 Loading HDFS Data
Press Ctrl+C to exit Hive (or open a new shell window), and edit the cx_stu01.txt file on
the local Linux host. The file content is as follows:

HCIA-Big Data V3.0 Lab Guide Page 18

Figure 3-4

Run the following put command to upload data to the /user/stu01/ directory of the
HDFS:

hdfs dfs -put cx_stu01.txt /user/stu01/

Figure 3-5

Run the beeline command to go to Hive and run the following command to load data
and import data to the foreign table:

load data inpath '/user/stu01/cx_stu01.txt' into table cx_stu02;

Figure 3-6

3.3.2 Task 3: Performing Basic Hive Queries
3.3.2.1 Fuzzy Queries

Run the show tables like 'cx_stu*'; statement.

HCIA-Big Data V3.0 Lab Guide Page 19

Figure 3-7

3.3.2.2 Simple Queries

Step 1 Run the following Limit statement:

select * from cx_stu02 limit 2;

Figure 3-8

Step 2 Run the following Where statement:

select * from cx_stu02 where gender ='male' limit 2;

Figure 3-9

Step 3 Run the following Order statement:

select * from cx_stu02 where gender ='female' order by age limit 2;

Figure 3-10

HCIA-Big Data V3.0 Lab Guide Page 20

3.3.2.3 Complex Queries

Step 1 Use the vi editor to edit the cx_stu03.txt file on the local Linux host. The file content
is as follows:

Figure 3-11

Step 2 Upload data to the HDFS.

Run the hdfs dfs -put cx_stu03.txt /user/stu01/ command.

Figure 3-12

Step 3 Create a table and import data to the table.

Run the beeline command to go to Hive and enter the following table creation
statement:

create external table cx_table_stu03(id int,name string ,subject string,score float) row format
delimited fields terminated by ',' stored as textfile ;

Run the following statement to import data:

load data inpath '/user/stu01/cx_stu03.txt' into table cx_table_stu03;

HCIA-Big Data V3.0 Lab Guide Page 21

Figure 3-13

Step 4 Perform the sum operation.

To calculate the total score of each student, run the following statement:

select name ,sum(score) total_score from cx_table_stu03 group by name ;

Figure 3-14

To calculate the total score of each student and filter out students whose total score is
greater than 230, run the following statement:

select name ,sum(score) total_score from cx_table_stu03 group by name having
total_score > 235;

Figure 3-15

Step 5 Perform the max operation.

To view the highest score of each course, run the following statement:

select subject,max(score) from cx_table_stu03 group by subject;

HCIA-Big Data V3.0 Lab Guide Page 22

Figure 3-16

Step 6 Perform the count operation.

To calculate the number of trainees taking the exam of each course, run the following
statement:

select subject,count(1) from cx_table_stu03 group by subject;

Figure 3-17

3.3.3 Task 3: Performing Hive Join Operations
Hive supports common SQL join statements, such as INNER JOIN, LEFT OUTER JOIN,
RIGHT OUTER JOIN, and map-side JOIN.

Step 1 Create a table and import data to the table.

Create three tables: cx_table_employee (employee table), cx_table_department
(department table), and cx_table_salary (salary table). Import data to the three tables.
For details about how to import data, see the previous content.

Statements for creating cx_table_employee:

create table if not exists cx_table_employee(
user_id int,
username string,
dept_id int)
row format delimited fields terminated by ','
stored as textfile ;

Figure 3-18

Statements for creating cx_table_department:

create table if not exists cx_table_department(
dept_id int,

HCIA-Big Data V3.0 Lab Guide Page 23

dept_name string)
row format delimited fields terminated by ','
stored as textfile ;

Figure 3-19

Statements for creating cx_table_salary:

create table if not exists cx_table_salary(
userid int,
dept_id int,
salarys double)
row format delimited fields terminated by ','
stored as textfile ;

Figure 3-20

The data in the three tables is as follows:

cx_table_ employee (employee table):

1,zhangsas,1

2,lisi,2

3,wangwu,3

4,tom,1

5,lily,2

6,amy,3

7,lilei,1

8,hanmeimei,2

9,poly,3

cx_table_department (department table):

1,Technical

2,sales

3,HR

4,marketing

cx_table_salary (salary table):

1,1,20000

2,2,16000

3,3,20000

4,1,50000

HCIA-Big Data V3.0 Lab Guide Page 24

5,2,18900

6,3,12098

7,1,21900

Step 2 Perform INNER JOIN.

When INNER JOIN join is performed on multiple tables, only the data that matches the
on condition in all tables is displayed. For example, the following SQL statement
implements the join between the employee table and the department table. The on
condition is dept_id. Only data with the same dept_id is matched and displayed.

Run the following statement:

select e.username,e.dept_id,d.dept_name,d.dept_id from cx_table_employee e join
cx_table_department d on e.dept_id = d.dept_id;

Figure 3-21

You can join two or more tables. Run the following statement to query the employee
names, departments, and salaries:

select e.username,d.dept_name,s.salarys from cx_table_employee e join cx_table_department d on
e.dept_id = d.dept_id join cx_table_salary s on e.user_id = s.userid;

Figure 3-22

Generally, a MapReduce job is generated for a join. If more than two tables are joined,
Hive associates the tables from left to right. For the preceding SQL statement, a
MapReduce job is started to connect the employee and department tables, and then the
second MapReduce job is started to connect the output of the first MapReduce job to the
salary table. This is contrary to the standard SQL, which performs the join operation from

HCIA-Big Data V3.0 Lab Guide Page 25

right to left. Therefore, in Hive SQL, small tables are written on the left to improve the
execution efficiency.

Hive supports the /*+STREAMTALBE*/ syntax to specify which table is a large table. For
example, in the following SQL statement, dept is specified as a large table. If the
/+STREAMTALBE/ syntax is not used, Hive considers the rightmost table as a large table.

Run the following statement:

select /*+STREAMTABlE(d)*/ e.username,e.dept_id,d.dept_name,d.dept_id from cx_table_employee e
join cx_table_department d on e.dept_id = d.dept_id;

Figure 3-23

Generally, the number of MapReduce jobs to be started is the same as the number of
tables to be joined. However, if the join keys of the on condition are the same, only one
MapReduce job is started.

Step 3 Perform LEFT OUTER JOIN.

LEFT OUTER JOIN, same as the standard SQL statement, uses the left table as a baseline.
If the right table matches the on condition, the data is displayed. Otherwise, NULL is
displayed.

Run the following statement:

select e.user_id,e.username,s.salarys from cx_table_employee e left outer join cx_table_salary s on
e.user_id = s.userid;

Figure 3-24

HCIA-Big Data V3.0 Lab Guide Page 26

As shown in the preceding figure, all records in the employee table on the left are
displayed, and the data that meets the on condition in the salary table on the right is
displayed. The data that does not meet the on condition is displayed as NULL.

Step 4 Perform RIGHT OUTER JOIN.

LEFT OUTER JOIN is opposite to LEFT OUTER JOIN. It uses the table on the right as a
baseline. If the table on the left matches the on condition, the data is displayed.
Otherwise, NULL is displayed.

Hive is a component for processing big data. It is often used to process hundreds of GB or
even TB-level data. Therefore, you are advised to use the where condition to filter out
data that does not meet the condition when compiling SQL statements. However, for
LEFT and RIGHT OUTER JOINs, the where condition is executed after the on condition is
executed. Therefore, to optimize the Hive SQL execution efficiency, use subqueries in
scenarios where OUTER JOINs are required and use the where condition to filter out data
that does not meet the conditions in the subqueries.

Run the following statement:

select e1.user_id,e1.username,s.salarys from (select e.* from cx_table_employee e where e.user_id < 8)
e1 left outer join cx_table_salary s on e1.user_id = s.userid;

Figure 3-25

In the preceding SQL statement, the data whose user_id is greater than or equal to 8 is
filtered out in the subquery.

Step 5 Perform FULL OUTER JOIN.

FULL OUTER JOIN returns all the data that meets the where condition in the table. The
data that does not meet the where condition is replaced with NULL.

Run the following statement:

select e.user_id,e.username,s.salarys from cx_table_employee e full outer join cx_table_salary s on
e.user_id = s.userid where e.user_id > 0;

HCIA-Big Data V3.0 Lab Guide Page 27

Figure 3-26

The results of FULL OUTER JOIN and LEFT OUTER JOIN are the same.

Step 6 Perform LEFT SEMI JOIN.

LEFT SEMI JOIN is used to query only the data that meets the requirements of the left
table.

Run the following statement:

select e.* from cx_table_employee e LEFT SEMI JOIN cx_table_salary s on e.user_id=s.userid;

Figure 3-27

LEFT SEMI JOIN is evolved from INNER JOIN. When a data record in the left table exists
in the right table, Hive stops scanning. Therefore, the efficiency is higher than that of
INNER JOIN. However, only the fields in the left table can be displayed behind the select
and where keywords in the LEFT SEMI JOIN. Hive does not support RIGHT SEMI JOIN.

Step 7 Perform CARTESIAN JOIN.

The result of Cartesian product join is to multiply the data in the left table by the data in
the right table.

Run the following statement:

select e.user_id,e.username,s.salarys from cx_table_employee e join cx_table_salary s;

HCIA-Big Data V3.0 Lab Guide Page 28

Figure 3-28

The execution result of the preceding SQL statement is the number of records in the
employee table multiplied by the number of records in the salary table.

Step 8 Perform map-side JOIN.

Map-side JOIN is an optimization of Hive SQL. Hive converts SQL statements into
MapReduce jobs. Therefore, the map-side JOIN corresponds to the map-side JOIN in the
Hadoop Join. Small tables are loaded to the memory to improve the Hive SQL execution
speed. You can use either of the following methods to use map-side JOIN of Hive SQL.
The first method is to use /*+ MAPJOIN*/:

Run the following statement:

select /*+ MAPJOIN(d)*/ e.username,e.dept_id,d.dept_name,d.dept_id from cx_table_employee e join
cx_table_department d on e.dept_id = d.dept_id;

HCIA-Big Data V3.0 Lab Guide Page 29

Figure 3-29

The second one is to set hive.auto,convert.JOIN to true.

3.3.4 Task 4: Using Hue to Execute HQL

Step 1 Log in to MRS Manager.

On the Services page, click Hue. On the displayed page, click Hue (Active). The Hue page
is displayed.

Figure 3-30

HCIA-Big Data V3.0 Lab Guide Page 30

Figure 3-31

Click the Query Editor and select Hive.

Figure 3-32

HCIA-Big Data V3.0 Lab Guide Page 31

Figure 3-33

Step 2 Compile HQL.

Edit the HQL statement in the blank area.

select *,row_number() over(order by totalscore desc) rank from (select name,sum(score) totalscore
from cx_table_stu03 group by name) a;

Figure 3-34

HCIA-Big Data V3.0 Lab Guide Page 32

Figure 3-35

Step 3 Query data.

Click the triangle button to execute HQL.

Figure 3-36

HCIA-Big Data V3.0 Lab Guide Page 33

Figure 3-37

Step 4 View the result.

Figure 3-38

HCIA-Big Data V3.0 Lab Guide Page 34

Figure 3-39

3.4 Summary
This exercise describes the add, delete, modify, and query operations of the Hive data
warehouse and introduces multiple join methods to help trainees understand the join
types and differences. This exercise aims to help trainees better understand and use Hive.

HCIA-Big Data V3.0 Lab Guide Page 35

4 HBase Columnar Database Practice

4.1 Background
The HBase database is an important big data component and is the most commonly used
NoSQL database in the industry. Banks can store new customer information in HBase and
update or delete out-of-date data in HBase.

4.2 Objectives
 Understand common HBase operations, region operations, and filter usage.

4.3 Tasks

4.3.1 Task 1: Performing Common HBase Operations
Run the source /opt/client/bigdata_env command to set environment variables.

Run the hbase shell command to access the HBase shell client.

Figure 4-1

4.3.1.1 Creating Common Tables
Run the create 'cx_table_stu01' , 'cf1' command.

Figure 4-2

list: displays all tables.

HCIA-Big Data V3.0 Lab Guide Page 36

4.3.1.2 Adding Data
Run the following commands:

put 'cx_table_stu01','20200001','cf1:name','tom'
put 'cx_table_stu01','20200001','cf1:gender','male'
put 'cx_table_stu01','20200001', 'cf1:age','20'
put 'cx_table_stu01','20200002', 'cf1:name','hanmeimei'
put 'cx_table_stu01','20200002', 'cf1:gender','female'
put 'cx_table_stu01','20200002', 'cf1:age','19'

Figure 4-3

4.3.1.3 Querying Data in Scan Mode
Run the following commands:

scan 'cx_table_stu01',{COLUMNS=>'cf1'} #Queries only the data in the cf1 column family.
scan 'cx_table_stu01',{COLUMNS=>'cf1:name'} #Queries only the name information in the cf1
column family.

Figure 4-4

HCIA-Big Data V3.0 Lab Guide Page 37

4.3.1.4 Querying Data in Get Mode
In Get mode, data is queried based on the row key.

Run the following commands:

get 'cx_table_stu01','20200001'
get 'cx_table_stu01','20200001','cf1:name'

Figure 4-5

4.3.1.5 Querying Data by Specified Criteria
Run the following commands:

scan 'cx_table_stu01',{STARTROW=>'20200001','LIMIT'=>2,STOPROW=>'20200002'}
scan 'cx_table_stu01',{STARTROW=>'20200001','LIMIT'=>2,COLUMNS=>'cf1:name'}

Figure 4-6

Note: In addition to column (COLUMNS) modifiers, HBase supports Limit (limiting the
number of rows in the query results) and STARTROW (ROWKEY start row. The system
locates the region based on the key and then scans the region backwards.), STOPROW
(end row), TIMERANGE (timestamp range), VERSIONS (the number of versions), and
FILTER (filtering rows based on conditions).

4.3.1.6 Querying Multiversion Data
HBase can store data of historical versions. You can set VERSIONS to specify the number
of versions to be stored.

Add data.

put 'cx_table_stu01','20200001','cf1:name','ZhangSan'
put 'cx_table_stu01','20200001','cf1:name','LiSi'

HCIA-Big Data V3.0 Lab Guide Page 38

put 'cx_table_stu01','20200001','cf1:name','WangWu'

Scan the table to view the result.

Figure 4-7

Specify multiple versions to be queried.

get 'cx_table_stu01','20200001',{COLUMNS=>'cf1',VERSIONS=>5}

Figure 4-8

The version is specified during the search, but the last record is still displayed. Although
VERSIONS is added, only one record is returned after the get operation. This is because
the default value of VERSIONS is 1 during table creation.

Run the desc'cx_table_stu01' statement to view the table attributes.

Figure 4-9

To view data of multiple versions, run the following statement to change the value of
VERSIONS of the table or specify the value when creating the table:

HCIA-Big Data V3.0 Lab Guide Page 39

alter 'cx_table_stu01',{NAME=>'cf1','VERSIONS'=>5}

alter ‘cx_table_stu01’,{NAME=>'cf1','VERSIONS'=>5}

Then, insert multiple data records.

put 'cx_table_stu01','20200001','cf1:name','ZhangSan'
put 'cx_table_stu01','20200001','cf1:name','LiSi'
put 'cx_table_stu01','20200001','cf1:name','WangWu'

The value of name has multiple versions.

Figure 4-10

4.3.1.7 Deleting Data
Run the delete 'cx_table_stu01','20200002','cf1:age' command to delete data from a
column family.

HCIA-Big Data V3.0 Lab Guide Page 40

Figure 4-11

Run the deleteall 'cx_table_stu01','20200002' command to delete a row of data.

Figure 4-12

4.3.1.8 Deleting Tables
You can run the drop command to delete a table. However, you must disable a table
before deleting it.

Step 1 Run the disable 'table name' command.

Step 2 Run the drop 'table name' command.

Figure 4-13

HCIA-Big Data V3.0 Lab Guide Page 41

4.3.2 Task 2: Pre-splitting Regions During Table Creation
By default, HBase creates a table with only one region. The row key of the region has no
boundary, that is, there is no start key or end key. All data is written to the default
region. As the data volume increases, the region cannot handle the increasing data.
Therefore, the region is split into two regions. During this process, the following problems
may occur:

1. When data is written to a region, data hotspots may occur.

2. Region splitting consumes valuable cluster I/O resources.

To resolve the preceding problems, create multiple empty regions during table creation,
and determine the start and end row keys of each region. In this way, as long as the row
key can evenly hit each region, the write hotspot problem does not exist, and the
probability of splitting is greatly reduced. HBase provides two pre-splitting algorithms:
HexStringSplit and UniformSplit. HexStringSplit applies to the row key of hexadecimal
characters, and UniformSplit applies to the row key of random byte arrays.

4.3.2.1 Splitting into Four Regions Randomly by Row Key
Run the create 'cx_table_stu02','cf2', {NUMREGIONS => 4 , SPLITALGO => 'UniformSplit'}
to create a table.

Figure 4-14

Region name format: [table],[region start key],[region id]

Log in to the HBase WebUI and check the table partitions.

Log in to MRS Manager, choose Services > HBase.

HCIA-Big Data V3.0 Lab Guide Page 42

Figure 4-15

Click HMaster (Active). The HMaster WebUI is displayed.

HCIA-Big Data V3.0 Lab Guide Page 43

Figure 4-16

Click cx_table_stu02 on the User Tables tab page. The Tables Regions page is displayed.

HCIA-Big Data V3.0 Lab Guide Page 44

Figure 4-17

The cx_table_stu02 table has four partitions.

Figure 4-18

4.3.2.2 Viewing the Start Key and End Key of Specified Regions
Run the create 'cx_table_stu03', 'cf3', SPLITS => ['10000', '20000', '30000'] command to
create a table.

Check the table partitions.

Figure 4-19

HCIA-Big Data V3.0 Lab Guide Page 45

4.3.3 Task 3: Using Filters
If the cx_table_stu01 table is deleted in the previous practice, recreate the table and
insert data.

Run the following commands:

scan 'cx_table_stu01',{FILTER=>"ValueFilter(=,'binary:20')"}
scan 'cx_table_stu01',{FILTER=>"ValueFilter(=,'binary:tom')"}
scan 'cx_table_stu01',FILTER=>"ColumnPrefixFilter('gender')"
scan 'cx_table_stu01',{FILTER=>"ColumnPrefixFilter('name') AND ValueFilter(=,'binary:hanmeimei')"}

Figure 4-20

4.4 Summary
This exercise describes how to create and delete HBase tables and add, delete, modify,
and query data, how to pre-split regions, and how to use filters to query data. After
completing this exercise, you will be able to know how to use HBase.

HCIA-Big Data V3.0 Lab Guide Page 46

5 MapReduce Data Processing Practice

5.1 Background
This section mainly introduces how to use MR to count words.

5.2 Objectives
Understand the principles of MapReduce programming.

5.3 Tasks

5.3.1 Task 1: MapReduce Shell Practice

Step 1 Log in to an ECS.

Use PuTTY to log in to the ECS and set environment variables.

Run the source /opt/client/bigdata_env command.

Figure 5-1

Step 2 Edit a data file on the local Linux host.

The file content is as follows:

HCIA-Big Data V3.0 Lab Guide Page 47

Figure 5-2

Step 3 Upload the file to the HDFS.

Figure 5-3

Step 4 Run the following command to execute the JAR file program:

yarn jar /opt/client/Yarn/hadoop/share/hadoop/mapreduce
/hadoop-mapreduce-examples-3.1.1-mrs-2.0.jar wordcount /user/stu01/cx_wd.txt /user/st
u01/output01

HCIA-Big Data V3.0 Lab Guide Page 48

Figure 5-4

Note: This JAR package is a sample JAR package built-in the Hadoop framework. The
default file separator is the Tab key. The output01 folder does not exist. The program
automatically creates the folder.

Step 5 View statistics results.

The result file is saved in the output01 folder. The system automatically generates a part-
r-00000 file.

Figure 5-5

The file statistics are complete.

Step 6 Parse the source code of the WordCount JAR package.

package com.huawei.bigdata.mapreduce.examples;

HCIA-Big Data V3.0 Lab Guide Page 49

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDemo {
 public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
 @Override
 protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text,
LongWritable>.Context context)
 throws IOException, InterruptedException {
 String line = value.toString();
 String[] splited = line.split("\t");
 for (String word : splited) {
 Text k2 = new Text(word);
 LongWritable v2 = new LongWritable(1);
 context.write(k2, v2);
 }
 }
 }

 public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
 @Override
 protected void reduce(Text k2, Iterable<LongWritable> v2s,
 Reducer<Text, LongWritable, Text, LongWritable>.Context context)
 throws IOException, InterruptedException {
 long count = 0L;
 for (LongWritable times : v2s) {
 count += times.get();
 }
 LongWritable v3 = new LongWritable(count);
 context.write(k2, v3);
 }
 }

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, WordCountDemo.class.getSimpleName());
 // Mandatory
 job.setJarByClass(WordCountDemo.class);

 // Specify where data comes from.
 FileInputFormat.setInputPaths(job, args[0]);
 // Specify where the custom mapper is.
 job.setMapperClass(MyMapper.class);
 // Specify the type of <k2,v2> output by the mapper.
 job.setMapOutputKeyClass(Text.class);

HCIA-Big Data V3.0 Lab Guide Page 50

 job.setMapOutputValueClass(LongWritable.class);
 // Specify where the custom reducer comes from.
 job.setReducerClass(MyReducer.class);
 // Specify the type of <k3,v3> output by reducer.
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(LongWritable.class);
 // Specify where data is written.
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 // true indicates that information such as running progress is sent to users in time.
 job.waitForCompletion(true);
 }
}
package com.huawei.bigdata.mapreduce.examples;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDemo {
 public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
 @Override
 protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text,
LongWritable>.Context context)
 throws IOException, InterruptedException {
 String line = value.toString();
 String[] splited = line.split("\t");
 for (String word : splited) {
 Text k2 = new Text(word);
 LongWritable v2 = new LongWritable(1);
 context.write(k2, v2);
 }
 }
 }

 public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
 @Override
 protected void reduce(Text k2, Iterable<LongWritable> v2s,
 Reducer<Text, LongWritable, Text, LongWritable>.Context context)
 throws IOException, InterruptedException {
 long count = 0L;
 for (LongWritable times : v2s) {
 count += times.get();
 }
 LongWritable v3 = new LongWritable(count);
 context.write(k2, v3);
 }
 }

HCIA-Big Data V3.0 Lab Guide Page 51

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job = Job.getInstance(conf, WordCountDemo.class.getSimpleName());
 // Mandatory
 job.setJarByClass(WordCountDemo.class);

 // Specify where data comes from.
 FileInputFormat.setInputPaths(job, args[0]);
 // Specify where the custom mapper is.
 job.setMapperClass(MyMapper.class);
 // Specify the type of <k2,v2> output by the mapper.
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(LongWritable.class);
 // Specify where the custom reducer comes from.
 job.setReducerClass(MyReducer.class);
 // Specify the type of <k3,v3> output by reducer.
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(LongWritable.class);
 // Specify where data is written.
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 // true indicates that information such as running progress is sent to users in time.
 job.waitForCompletion(true);
 }
}

5.3.1 (Optional) Task 2: MapReduce Java Practice: Collecting
Statistics on Online Duration

Prerequisites: The Java development environment has been installed and the MRS2.0
sample project has been imported. For details, see Appendix 1.

Step 1 Check the imported sample project.

The directory structure of the imported sample project is as follows:

HCIA-Big Data V3.0 Lab Guide Page 52

Figure 5-6

Step 2 Understand the scenario.

Develop a MapReduce application to perform the following operations on logs about
Time On Page (TP) of netizens for shopping online.

1. Collect statistics on female netizens whose TP for online shopping is more than 2
hours on the weekend.

2. The first column in the log file records names, the second column records gender,
and the third column records the TP in the unit of minute. Three columns are
separated by comma (,).

log1.txt: logs collected on Saturday.

LiuYang,female,20
YuanJing,male,10
GuoYijun,male,5
CaiXuyu,female,50
Liyuan,male,20
FangBo,female,50
LiuYang,female,20
YuanJing,male,10
GuoYijun,male,50
CaiXuyu,female,50
FangBo,female,60

log2.txt: logs collected on Sunday.

HCIA-Big Data V3.0 Lab Guide Page 53

LiuYang,female,20
YuanJing,male,10
CaiXuyu,female,50
FangBo,female,50
GuoYijun,male,5
CaiXuyu,female,50
Liyuan,male,20
CaiXuyu,female,50
FangBo,female,50
LiuYang,female,20
YuanJing,male,10
FangBo,female,50
GuoYijun,male,50
CaiXuyu,female,50
FangBo,female,60

Step 3 Plan data.

Save the original log files in the HDFS.

1. Create two text files on the local host, copy the content in log1.txt to
cx_input_data1.txt, and copy the content in log2.txt to cx_input_data2.txt.

2. Create folder /user/stu01/input in the HDFS and upload cx_input_data1.txt and
cx_input_data2.txt to the directory.

a Run the hdfs dfs -mkdir /user/stu01/input command on the HDFS client in the
Linux system.

b Run the hdfs dfs –put local_filepath /user/stu01/input command twice.

After the operation is complete, the files in the corresponding HDFS directory are as
follows:

Figure 5-7

Step 4 Understand the development approaches.

Collect statistics on female netizens whose TP is more than 2 hours on the weekend.

To achieve the objective, the process is as follows:

1. Read the original file data.

2. Filter data about the TP of the female netizens.

3. Summarize the total TP of each female.

HCIA-Big Data V3.0 Lab Guide Page 54

4. Filter information about female netizens whose TP for online shopping is more than

two hours.

Parse sample code. The class in the sample project is FemaleInfoCollector.java.

Collect statistics on female netizens whose TP for online shopping is more than 2 hours
on the weekend.

To achieve the objective, the process is as follows:

1. Filter the TP of female netizens in original files using the CollectionMapper class
inherited from the Mapper abstract class.

2. Summarize the TP of each female netizen, and output information about female
netizens whose TP is more than 2 hours using the CollectionReducer class inherited
from the Reducer abstract class.

3. Use the main method to create a MapReduce job and submit the MapReduce job to
the Hadoop cluster.

Step 5 Run the MR packaging program.

Open the cmd window, go to the directory where the project is located, and run the mvn
package command to package the project.

Figure 5-8

Run the mvn package command to generate a JAR package and obtain it from the target
directory in the project directory, for example, mapreduce-examples-mrs-2.0.jar.

Figure 5-9

Step 6 Use WinSCP to log in to an ECS.

Upload the JAR package to the /root directory.

HCIA-Big Data V3.0 Lab Guide Page 55

Figure 5-10

Step 7 Use PuTTY to log in to the ECS and run the MR program.

Run the source /opt/client/bigdata_env command.

Figure 5-11

Run the mapreduce program.

yarn jar /root/mapreduce-examples-mrs-2.0.jar
com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector /user
/stu01/input /user/stu01/output2

Note: /output2 must not exist.

Figure 5-12

Step 8 View the result. The MR output result is stored in the /output2 directory. A result
file part-r-00000 is generated. Run the cat command to view the result.

HCIA-Big Data V3.0 Lab Guide Page 56

Figure 5-13

There are two persons whose TP exceeds 2 hours.

5.4 Summary
This exercise describes the MapReduce programming process in shell and Java modes and
explains the source code to help trainees quickly get started with MapReduce.

HCIA-Big Data V3.0 Lab Guide Page 57

6 Spark Memory Computing Practice

6.1 Background
Spark is implemented in the Scala language, and uses Scala as its application framework.
Different from Hadoop, Spark can be tightly integrated with Scala. Scala can operate
Resilient Distributed Datasets (RDDs) so easily as operating local combined objects. This
exercise describes how to use Scala to operate Spark RDD and Spark SQL.

6.2 Objectives
Understand Spark programming by exercising Spark RDD and Spark SQL.

6.3 Tasks

6.3.1 Task 1: Spark RDD Programming
This exercise introduces Spark RDD programming to help you understand the working
principles and core mechanism of Spark Core.

The process is as follows:

 Understand how to create an RDD.

 Understand the common operator of RDD.

 Understand how to use Scala project code to complete RDD operations.

Step 1 Load data from a file system to create an RDD.

Spark uses the textFile() method to load data from a file system to create an RDD.

This method takes the URI of the file as a parameter, which can be the address of the
local file system, the address of the HDFS, the address of Amazon S3, or more.

Connect to the cluster, start PuTTY or another connection software, load environment
variables, and enter spark-shell.

source /opt/client/bigdata_env
spark-shell

HCIA-Big Data V3.0 Lab Guide Page 58

Figure 6-1

1. Load data from a Linux local file system.

scala> val lines = sc.textFile("file:///home/data/log1.txt")

Figure 6-2

2. Load data from the HDFS. If the file does not exist, put it again.

scala> val lines1 = sc.textFile("hdfs://hacluster/user/stu01/cx_input_data1.txt")
scala> val lines2 = sc.textFile("/user/stu01/cx_input_data1.txt ")

You can use either of the statements but the second one is recommended.

HCIA-Big Data V3.0 Lab Guide Page 59

Figure 6-3

Step 2 Create an RDD using a parallel set (array).

You can call the parallelize method of SparkContext to create an RDD on an existing set
(array) in Driver.

scala> val array = Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at parallelize at <console>:26
scala> rdd.collect()
res9: Array[Int] = Array(1, 2, 3, 4, 5)

Alternatively, you can create an RDD as follows:

scala> val list = List(1,2,3,4,5)
list: List[Int] = List(1, 2, 3, 4, 5)
scala> val rdd = sc.parallelize(list)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[15] at parallelize at <console>:26
scala> rdd.collect()
res10: Array[Int] = Array(1, 2, 3, 4, 5)
scala>

6.3.2 Task 2: RDD Shell Operations
Common transformations

Table 6-1

Transformation Meaning

map(func)
Returns a new RDD formed by passing each
element of the source through a function func.

filter(func)
Returns a new RDD formed by selecting those
elements of the source on which func returns true.

flatMap(func)
Similar to map, but each input item can be mapped
to 0 or more output items (so func should return a

HCIA-Big Data V3.0 Lab Guide Page 60

Transformation Meaning

Seq instead of a single item).

mapPartitions(func)

Similar to map, but runs separately on each
partition (block) of the RDD, so func must be of
type Iterator<T> => Iterator<U> when running on
an RDD of type T.

mapPartitionsWithIndex(func)

Similar to mapPartitions, but also provides func with
an integer value representing the index of the
partition, so func must be of type (Int, Iterator<T>)
=> Iterator<U> when running on an RDD of type T.

union(otherDataset)
Returns a new RDD that contains the union of the
elements in the source RDD and the argument.

intersection(otherDataset)
Returns a new RDD that contains the intersection of
the elements in the source RDD and the argument.

distinct([numTasks]))
Returns a new RDD that contains the distinct
elements of the source RDD.

groupByKey([numTasks])
When called on an RDD of (K, V) pairs, returns an
RDD of (K, Iterable<V>) pairs.

reduceByKey(func, [numTasks])

When called on an RDD of (K, V) pairs, returns an
RDD of (K, V) pairs where the values for each key
are aggregated using the given reduce function
func, which must be of type (V,V) => V. Like in
groupByKey, the number of reduce tasks is
configurable through an optional second argument.

sortByKey([ascending],
[numTasks])

When called on an RDD of (K, V) pairs where K
implements Ordered, returns an RDD of (K, V) pairs
sorted by keys in descending order.

sortBy(func,[ascending],
[numTasks])

Similar to sortByKey, but more flexible.

join(otherDataset, [numTasks])
When called on RDDs of type (K, V) and (K, W),
returns an RDD of (K, (V, W)) pairs with all pairs of
elements for each key.

cogroup(otherDataset,
[numTasks])

When called on RDDs of type (K, V) and (K, W),
returns an RDD of (K, (Iterable<V>, Iterable<W>))
tuples.

coalesce(numPartitions)
Decreases the number of partitions in the RDD to
numPartitions.

repartition(numPartitions) Reshuffles the data in the RDD randomly to create

HCIA-Big Data V3.0 Lab Guide Page 61

Transformation Meaning

either more or fewer partitions and balance it
across them.

repartitionAndSortWithinPartitio
ns(partitioner)

Repartitions the RDD according to the given
partitioner and, within each resulting partition, sorts
records by their keys.

Common actions

Action Meaning

reduce(func)

Aggregates the elements of the RDD using a
function which takes two arguments and returns
one.

collect()
Returns all the elements of the RDD as an array at
the driver program.

count() Returns the number of elements in the RDD.

first()
Returns the first element of the RDD, which is
similar to take(1).

take(n)
Returns an array with the first n elements of the
RDD.

takeOrdered(n, [ordering])
Returns the first n elements of the RDD using either
their natural order or a custom comparator.

saveAsTextFile(path)

Writes the elements of the RDD as a text file (or set
of text files) in a given directory in the local
filesystem, HDFS or any other Hadoop-supported
file system. Spark will call toString on each element
to convert it to a line of text in the file.

saveAsSequenceFile(path)

Writes the elements of the RDD as a Hadoop
SequenceFile in a given path in the local filesystem,
HDFS or any other Hadoop-supported file system.

saveAsObjectFile(path)
Writes the elements of the RDD in a simple format
using Java serialization.

countByKey()
Only available on RDDs of type (K, V). Returns a
hashmap of (K, Int) pairs with the count of each
key.

foreach(func) Runs a function func on each element of the RDD.

foreachPartition(func) Runs a function func on each partition of the RDD.

HCIA-Big Data V3.0 Lab Guide Page 62

Step 1 Use map and filter.

Generate RDDs in parallel.

val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))
//Multiply each element in rdd1 by 2 and sort the results.
val rdd2 = rdd1.map(_ * 2).sortBy(x => x, true)
//Filter elements greater than or equal to 5.
val rdd3 = rdd2.filter(_ >= 5)
//Display elements on the client in array mode.

The result is as follows:

Figure 6-4

Step 2 Use flatMap.

val rdd1 = sc.parallelize(Array("a b c", "d e f", "h i j"))
//Divide each element in rdd1 and flatten the elements.
val rdd2 = rdd1.flatMap(_.split(" "))
rdd2.collect

The result is as follows:

Figure 6-5

Step 3 Use intersection and union.

val rdd1 = sc.parallelize(List(5, 6, 4, 3))
val rdd2 = sc.parallelize(List(1, 2, 3, 4))
//Obtain the union set.
val rdd3 = rdd1.union(rdd2)
//Obtain the intersection.
val rdd4 = rdd1.intersection(rdd2)
//Deduplicate data.

HCIA-Big Data V3.0 Lab Guide Page 63

rdd3.distinct.collect
rdd4.collect

The result is as follows:

Figure 6-6

Figure 6-7

Step 4 Use join and groupByKey.

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))
//Obtain the join.
val rdd3 = rdd1.join(rdd2)
rdd3.collect
//Obtain the union set.
val rdd4 = rdd1 union rdd2
rdd4.collect
//Group by key.
val rdd5=rdd4.groupByKey
rdd5.collect

Step 5 Use cogroup.

val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("jim", 2)))
//cogroup
val rdd3 = rdd1.cogroup(rdd2)
//Pay attention to the difference between cogroup and groupByKey.
rdd3.collect

Step 6 Use reduce.

val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5))

HCIA-Big Data V3.0 Lab Guide Page 64

//Reduce aggregation.
val rdd2 = rdd1.reduce(_ + _)
rdd2

Figure 6-8

Step 7 Use reduceByKey and sortByKey.

val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2), ("shuke", 1)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 3), ("shuke", 2), ("kitty", 5)))
val rdd3 = rdd1.union(rdd2)
//Aggregate by key.
val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.collect
//Sort by value in descending order.
val rdd5 = rdd4.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1))
rdd5.collect

Figure 6-9

Figure 6-10

Step 8 Understand the lazy mechanism.

The lazy mechanism means that the entire transformation process only records the track
of the transformation and does not trigger real calculation. Only when an operation is
performed, real calculation is triggered from the beginning to the end.

HCIA-Big Data V3.0 Lab Guide Page 65

A simple statement is provided to explain the lazy mechanism of Spark. The data.txt file
does not exist, but the first two statements are executed successfully. An error occurs
only when the third action statement is executed.

scala> val lines = sc.textFile("data.txt")
scala> val lineLengths = lines.map(s => s.length)
scala> val totalLength = lineLengths.reduce((a, b) => a + b)

Figure 6-11

Step 9 Perform persistence operations.

The following is an example of calculating the same RDD for multiple times:

scala> val list = List("Hadoop","Spark","Hive")
list: List[String] = List(Hadoop, Spark, Hive)
scala> val rdd = sc.parallelize(list)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[22] at parallelize at <console>:29
scala> println(rdd.count())
//Action operation, which triggers a real start-to-end calculation.
3
scala> println(rdd.collect().mkString(","))
//Action operation, which triggers a real start-to-end calculation.
Hadoop,Spark,Hive

After the preceding instance is added, the execution process after a persistence statement
is added is as follows:

scala> val list = List("Hadoop","Spark","Hive")
list: List[String] = List(Hadoop, Spark, Hive)
scala> val rdd = sc.parallelize(list)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[22] at parallelize at <console>:29
scala> rdd.cache()

HCIA-Big Data V3.0 Lab Guide Page 66

//Persist(MEMORY_ONLY) is called. However, when the statement is executed, the RDD is not cached
because the RDD has not been calculated and generated.
scala> println(rdd.count())
//The first action triggers a real start-to-end calculation. In this case, the preceding rdd.cache() is
executed and the RDD is stored in the cache.
3
scala> println(rdd.collect().mkString(","))
//The second action does not need to trigger a start-to-end calculation. Only the RDD in the cache
needs to be reused.
Hadoop,Spark,Hive

6.3.3 (Optional) Task 3: RDD Code Programming — Java
Programming

Step 1 Understand the scenario.

Same as the MapReduce exercise background, this exercise requires you to calculate the
TP.

Develop a Spark application to perform the following operations on logs about the TP of
netizens for online shopping on a weekend:

1. Collect statistics on female netizens whose TP for online shopping is more than 2
hours on the weekend.

2. The first column in the log file records names, the second column records gender,
and the third column records the TP in the unit of minute. Three columns are
separated by comma (,).

log1.txt: logs collected on Saturday.

LiuYang,female,20
YuanJing,male,10
GuoYijun,male,5
CaiXuyu,female,50
Liyuan,male,20
FangBo,female,50
LiuYang,female,20
YuanJing,male,10
GuoYijun,male,50
CaiXuyu,female,50
FangBo,female,60

log2.txt: logs collected on Sunday.

LiuYang,female,20
YuanJing,male,10
CaiXuyu,female,50
FangBo,female,50
GuoYijun,male,5
CaiXuyu,female,50
Liyuan,male,20
CaiXuyu,female,50
FangBo,female,50

HCIA-Big Data V3.0 Lab Guide Page 67

LiuYang,female,20
YuanJing,male,10
FangBo,female,50
GuoYijun,male,50
CaiXuyu,female,50
FangBo,female,60

Step 2 Plan data.

Upload two Internet access log files to the /user/stu01/input directory of the HDFS. If the
log files already exist, you do not need to upload it.

Step 3 Start a Spark sample project.

Based on the MRS 2.0 sample project imported during environment installation, start the
FemaleInfoCollection project, which is the Spark Core project. The folder in the MRS 2.0
sample project package is SparkJavaExample.

Figure 6-12

Step 4 Package the project.

Open the cmd window, go to the directory where the project is located, and run the mvn
package command to package the project.

Figure 6-13

Step 5 Use WinSCP to log in to an ECS.

Upload the JAR package to the /root directory.

HCIA-Big Data V3.0 Lab Guide Page 68

Figure 6-14

Step 6 Use PuTTY to log in to the ECS and run the Spark program.

Run the source /opt/client/bigdata_env command.

Figure 6-15

Execute the Spark program.

/opt/client/Spark/spark/bin/spark-submit --class
com.huawei.bigdata.spark.examples.FemaleInfoCollection --master yarn --deploy-mode client
/root/FemaleInfoCollection-mrs-2.0.jar /user/stu01/input

HCIA-Big Data V3.0 Lab Guide Page 69

Figure 6-16

The total TP of the two persons exceeds 2 hours.

6.3.4 Task 4: Spark SQL DataFrame Programming
In versions earlier than Spark 2.0, SQLContext in Spark SQL is the entry for creating
DataFrames and executing SQL statements. You can use HiveContext to operate Hive
table data through Hive SQL statements. HiveContext is compatible with Hive operations
and is inherited from SQLContext. In versions later than Spark 2.0, all these functions are
integrated into SparkSession. SparkSession encapsulates SparkContext and SQLContext.
You can obtain SparkConetxt and SQLContext objects through SparkSession.

HCIA-Big Data V3.0 Lab Guide Page 70

Figure 6-17

Step 1 Edit a data file.

Create the cx_person.txt file on the local Linux host. The file contains three columns: id,
name, and age. The three columns are separated by space. The content of the
cx_person.txt file is as follows:

1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40

Step 2 Upload the data file to a directory in the HDFS.

hdfs dfs -put cx_person.txt /

Figure 6-18

Run the spark-shell command to go to Spark. Then run the following command to read
data and separate data in each row using column separators:

HCIA-Big Data V3.0 Lab Guide Page 71

val lineRDD= sc.textFile("/cx_person.txt").map(_.split(" "))

Figure 6-19

Step 3 Define a case class.

A class is equivalent to a schema of a table.

case class Person(id:Int, name:String, age:Int)

Figure 6-20

Step 4 Associate an RDD with the case class.

val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))

Figure 6-21

Step 5 Transform the RDD into DataFrame.

val personDF = personRDD.toDF

Figure 6-22

Step 6 View information about DataFrame.

personDF.show

HCIA-Big Data V3.0 Lab Guide Page 72

Figure 6-23

personDF.printSchema

Figure 6-24

Step 7 Use the domain-specific language (DSL).

DataFrame provides the DSL to operate structured data.

View the data of the name field.

personDF.select(personDF.col("name")).show

Figure 6-25

Check another format of the name field.

personDF.select("name").show

HCIA-Big Data V3.0 Lab Guide Page 73

Figure 6-26

Step 8 Check the data of the name and age fields.

personDF.select(col("name"), col("age")).show

Figure 6-27

Step 9 Query all names and ages and increase the value of age by 1.

personDF.select(col("id"), col("name"), col("age") + 1).show

HCIA-Big Data V3.0 Lab Guide Page 74

Figure 6-28

You can also perform the following operation:

personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show

Step 10 Use the filter method to filter the records where age is greater than or equal to 25.

personDF.filter(col("age") >= 25).show

Figure 6-29

Step 11 Count the number of people who are older than 30.

personDF.filter(col("age")>30).count()

Figure 6-30

Step 12 Group people by age and collect statistics on the number of people of the same
age.

personDF.groupBy("age").count().show

HCIA-Big Data V3.0 Lab Guide Page 75

Figure 6-31

Step 13 Use SQL.

A powerful feature of DataFrame is that it can be regarded as a relational data table.
You can use spark.sql() in the program to execute SQL statements for query. The result is
returned as a DataFrame.

If the SQL is used, you need to register DataFrame as a table in the following way:

personDF.registerTempTable("cx_t_person")

Run the following command to display the schema information of the table:

spark.sql("desc cx_t_person ").show

Figure 6-32

Step 14 Query the two oldest people.

spark.sql("select * from cx_t_person order by age desc limit 2").show

HCIA-Big Data V3.0 Lab Guide Page 76

Figure 6-33

Step 15 Query information about people older than 30.

spark.sql("select * from cx_t_person where age > 30 ").show

Figure 6-34

6.3.5 Task 5: Spark SQL DataSet Programming

Step 1 Create a dataset using spark.createDataset.

val ds1 = spark.createDataset(1 to 5)
ds1.show

Figure 6-35

Step 2 Create a dataset using a file.

val ds2 = spark.createDataset(sc.textFile("/cx_person.txt"))
ds2.show

HCIA-Big Data V3.0 Lab Guide Page 77

Figure 6-36

Step 3 Create a dataset using the toDS method.

case class Person2(id:Int, name:String, age:Int)
val data = List(Person2(1001,"liubei",20),Person2(1002,"guanyu",30))
val ds3 = data.toDS
ds3.show

Figure 6-37

Step 4 Create a database using DataFrame and as[Type].

Perform transformation based on the DataFrame of personDF in task 1. Note that the
person object fields in Person2 and personDF must be the same.

val ds4= personDF.as[Person2]
ds4.show

HCIA-Big Data V3.0 Lab Guide Page 78

Figure 6-38

Step 5 Collect statistics on the number of people older than 30 in the dataset.

ds4.filter(col("age") >= 25).show

Figure 6-39

6.4 Summary
This exercise introduces RDD-based Spark Core programming and DataFrame- and
DataSet-based Spark SQL programming, and enables trainees to understand the basic
operations of Spark programming.

HCIA-Big Data V3.0 Lab Guide Page 79

7 Flink Real-Time Processing System
Practice

7.1 Background
Flink is a unified computing framework that supports both batch processing and stream
processing. It provides a stream data processing engine that supports data distribution
and parallel computing.

Flink provides high-concurrency pipeline data processing, millisecond-level latency, and
high reliability, making it extremely suitable for low-latency data processing.

7.2 Objectives
The asynchronous CheckPoint mechanism and real-time hot-selling product statistics of
Flink help you understand the core ideas of Flink and how to use Flink to solve problems.

7.3 Tasks

7.3.1 Task 1: Importing a Flink Sample Project

Step 1 Download Flink sample code.

Visit https://support.huaweicloud.com/en-us/devg-
mrs/mrs_06_0002.html#mrs_06_0002__section336726849219.

Click the sample project of HUAWEI CLOUD MRS 1.8 for download.

Figure 7-1

Step 2 Import the sample project.

https://support.huaweicloud.com/en-us/devg-mrs/mrs_06_0002.html#mrs_06_0002__section336726849219
https://support.huaweicloud.com/en-us/devg-mrs/mrs_06_0002.html#mrs_06_0002__section336726849219

HCIA-Big Data V3.0 Lab Guide Page 80

For details about how to import the MRS sample project, navigate to the Appendix to
refer to the instructions on how to import an MRS sample project in Eclipse. After the
import, the project automatically downloads related dependency packages.

Figure 7-2

The preceding figure shows the project code structure.

7.3.2 Task 2: Exercising the Asynchronous CheckPoint Mechanism
Assume that you want to collect data volume in a 4-second time window every other
second and the status of operators must be strictly consistent. That is, if an application
recovers from a failure, the status of all operators must the same.

7.3.2.1 Data Planning
1. A custom operator generates about 10,000 pieces of data per second.

2. The generated data is a quadruple (Long, String, String, Integer).

3. After the statistics are collected, the statistical result is displayed on the terminal.

4. The output data is of the Long type.

7.3.2.2 Exercise Process
1. The source operator sends 10,000 pieces of data every second and injects the data

into the window operator.

2. The window operator calculates the data generated in the last 4 seconds every
second.

3. The statistical result is displayed on the terminal every second.

4. A checkpoint is triggered every 6 seconds and saved to the HDFS.

7.3.2.3 Procedure

Step 1 Write the snapshot data code.

HCIA-Big Data V3.0 Lab Guide Page 81

The snapshot data is used to store the number of data pieces recorded by operators
during snapshot creation.

Create a class named UDFState in the com.huawei.flink.example.common package of the
sample project. The code is as follows:

import java.io.Seriablizale;
// This class is part of the snapshot and is used to save UDFState.
public class UDFState implements Serializable {
 private long count;
 // Initialize UDFState.
 public UDFState() {
 count = 0L;
 }
 // Set UDFState.
 public void setState(long count) {
 this.count = count;
 }
 // Obtain UDFState.
 public long geState() {
 return this.count;
 }
}

Step 2 Compile a data source with a checkpoint.

The code snippet of a source operator pauses 1 second every time after sending 10,000
pieces of data. When a snapshot is created, the code saves the total number of sent data
pieces in UDFState. When the snapshot is used for restoration, the number of sent data
pieces saved in UDFState is read and assigned to the count variable.

Create the SimpleSourceWithCheckPoint class in the common package. The code is as
follows:

import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.streaming.api.checkpoint.ListCheckpointed;
import org.apache.flink.streaming.api.functions.source.SourceFunction;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

public class SimpleSourceWithCheckPoint implements SourceFunction<Tuple4<Long, String, String,
Integer>>, ListCheckpointed<UDFState> {

 private long count = 0;
 private boolean isRunning = true;
 private String alphabet = "justtest";

 @Override
 public List<UDFState> snapshotState(long l, long l1) throws Exception
 {
 UDFState udfState = new UDFState();
 List<UDFState> udfStateList = new ArrayList<UDFState>();
 udfState.setState(count);

HCIA-Big Data V3.0 Lab Guide Page 82

 udfStateList.add(udfState);
 return udfStateList;
 }

 @Override
 public void restoreState(List<UDFState> list) throws Exception
 {
 UDFState udfState = list.get(0);
 count = udfState.geState();
 }

 @Override
 public void run(SourceContext<Tuple4<Long, String, String, Integer>> sourceContext) throws
Exception
 {
 Random random = new Random();
 while (isRunning) {
 for (int i = 0; i < 10000; i++) {
 sourceContext.collect(Tuple4.of(random.nextLong(), "hello" + count, alphabet, 1));
 count ++;
 }
 Thread.sleep(1000);
 }
 }

 @Override
 public void cancel()
 {
 isRunning = false;
 }
}

Step 3 Define a window with a checkpoint.

This code snippet is about a window operator and is used to calculate the number or
tuples in the window.

Create the WindowStatisticWithChk class in the common package. The code is as follows:

import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.streaming.api.checkpoint.ListCheckpointed;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.util.ArrayList;
import java.util.List;

public class WindowStatisticWithChk implements WindowFunction<Tuple4<Long, String, String,
Integer>, Long, Tuple, TimeWindow>, ListCheckpointed<UDFState> {

 private long total = 0;

 @Override

HCIA-Big Data V3.0 Lab Guide Page 83

 public List<UDFState> snapshotState(long l, long l1) throws Exception
 {
 UDFState udfState = new UDFState();
 List<UDFState> list = new ArrayList<UDFState>();
 udfState.setState(total);
 list.add(udfState);
 return list;
 }

 @Override
 public void restoreState(List<UDFState> list) throws Exception
 {
 UDFState udfState = list.get(0);
 total = udfState.geState();
 }
 @Override
 public void apply(Tuple tuple, TimeWindow timeWindow, Iterable<Tuple4<Long, String, String,
Integer>> iterable, Collector<Long> collector) throws Exception
 {
 long count = 0L;
 for (Tuple4<Long, String, String, Integer> tuple4 : iterable) {
 count ++;
 }
 total += count;
 collector.collect(total);
 }
}

Step 4 Develop application code.

The code is about the definition of StreamGraph and is used to implement services. The
processing time is used as the time for triggering the window.

Create the FlinkProcessingTimeAPIChkMain class in the common package. The code is as
follows:

import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
public class FlinkProcessingTimeAPIChkMain {
 public static void main(String[] args) throws Exception
 {
 String chkPath = ParameterTool.fromArgs(args).get("chkPath",
"hdfs://hacluster/flink/checkpoints/");
 StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();

 env.setStateBackend((StateBackend) new FsStateBackend((chkPath)));
 env.enableCheckpointing(6000, CheckpointingMode.EXACTLY_ONCE);
 env.addSource(new SimpleSourceWithCheckPoint())
 .keyBy(0)

HCIA-Big Data V3.0 Lab Guide Page 84

 .window(SlidingProcessingTimeWindows.of(Time.seconds(4), Time.seconds(1)))
 .apply(new WindowStatisticWithChk())
 .print();

 env.execute();
 }
}

The code is compiled.

Step 5 Package the program.

Open the cmd window, go to the directory where the project is located, and run the mvn
package command to package the project.

Figure 7-3

Run the mvn package command to generate a JAR package and obtain it from the target
directory in the project directory, for example, mapreduce-examples-mrs-2.0.jar.

Figure 7-4

Step 6 Use WinSCP to log in to an ECS.

Upload the JAR package to the /root directory.

HCIA-Big Data V3.0 Lab Guide Page 85

Figure 7-5

Step 7 Start the Flink cluster.

Use PuTTY to log in to the ECS and run the source /opt/client/bigdata_env command.

Figure 7-6

Start the Flink cluster before running the Flink applications on Linux. Run the yarn
session command on the Flink client to start the Flink cluster. The following is a
command example:

/opt/client/Flink/flink/bin/yarn-session.sh -n 3 -jm 1024 -tm 1024

Note: yarn-session starts a running Flink cluster on Yarn. Once the session is successfully
created, you can use the bin/flink tool to submit tasks to the cluster. The system uses the
conf/flink-conf.yaml configuration file by default.

Parameters in the yarn-session command:

Mandatory:

 -n,--container <arg>: number of Yarn containers(= number of taskmanagers)

Optional:

 -D <arg>: dynamic attribute
 -d,--detached: independent running
 -jm,--jobManagerMemory <arg>: JobManager memory [in MB]
 -nm,--name: sets a name for a user-defined application on Yarn.
 -q,--query: displays the available resources (memory and the number of CPU cores) on Yarn.
 -qu,--queue <arg>: specifies the Yarn queue.
 -s,--slots <arg>: number of slots used by each TaskManager
 -tm,--taskManagerMemory <arg>: memory of each TaskManager [in MB]
 -z,--zookeeperNamespace <arg>: creates a namespace in the ZooKeeper in HA mode.

After the command is executed, the following result is displayed:

HCIA-Big Data V3.0 Lab Guide Page 86

Figure 7-7

The IP address of the JobManager web page is an intranet IP address. Log in to MRS
Manager, find the server, and bind an EIP to it. For details about how to bind an EIP, see
the related operations in the MRS documents. Use the EIP to replace the intranet IP
address and access the server. For example, if the bound IP address is 119.3.4.47, the
access address is http://119.3.4.47:42552.

Figure 7-8

Step 8 Run the JAR package of Flink.

Save the checkpoint snapshot information to HDFS

Press Ctrl+C to close the cluster command window (the cluster is still running in the
background), or start PuTTY and run the following command:

/opt/client/Flink/flink/bin/flink run --class
com.huawei.flink.example.checkpoint.FlinkProcessingTimeAPIChkMain /root/flink-examples-1.0.jar
--chkPath hdfs://hacluster/flink/checkpoints/

Parameter description: class is followed by the full path of the main program entry class
and then the JAR package of the program. chkPath is the path for storing the checkpoint
file. In cluster mode, Flink stores the checkpoint file in HDFS.

The run parameter can be used to compile and run a program.

Usage: run [OPTIONS] <jar-file> <arguments>

HCIA-Big Data V3.0 Lab Guide Page 87

Run parameters:

 -c,--class <classname>: If the entry class is not specified in the JAR package, this parameter is
used to specify the entry class.
 -m,--jobmanager <host:port>: specifies the address of the JobManager (active node) to be
connected. This parameter can be used to specify a JobManager that is different from that in the
configuration file.
 -p,--parallelism <parallelism>: specifies the degree of parallelism of a program. The default
value in the configuration file can be overwritten.

Execution result:

Figure 7-9

On the Flink management panel, one more running Flink job is displayed.

Figure 7-10

Step 9 View the output.

On the Task Manager page of the Flink management panel, click Stdout to view the
output.

HCIA-Big Data V3.0 Lab Guide Page 88

Figure 7-11

Step 10 View checkpoints.

Start PuTTY and run the HDFS command to view the /flink/checkpoints directory.

Figure 7-12

Step 11 Kill a Flink job.

Run the /opt/client/Flink/flink/bin/flink list command to view the Flink task list.

Figure 7-13

Specify the obtained job ID and run the following command to kill the job:

/opt/client/Flink/flink/bin/flink cancel dc9639f998074926587c72081c2e8599

HCIA-Big Data V3.0 Lab Guide Page 89

Figure 7-14

7.3.3 Task 3: Obtaining Top N Hot-Selling Offerings in Flink in
Real Time

This exercise illustrates how to develop a complex Flink application for obtaining best-
selling offerings in real time.

7.3.3.1 Tasks
1. How is data processed based on EventTime and how is Watermark specified?

2. How are Window APIs with flexible Flink used?

3. When and how is State used?

4. How is ProcessFunction used to Implement the TopN function?

7.3.3.2 Exercise Process
1. Extract the service timestamp and enable the Flink framework to create a window

based on the service time.

2. Filter click behavior data.

3. Collect statistics on the size of the sliding window every five minutes and aggregate
the sliding windows.

4. Aggregate by window and output the top N offerings with the most clicks in each
window.

7.3.3.3 Procedure

Step 1 Prepare a Flink project.

Import the Flink sample project.

Create the com.huawei.flink.example.goods package in src/main/java.

HCIA-Big Data V3.0 Lab Guide Page 90

Figure 7-15

Step 2 Prepare data.

Data file attached to the exercise manual: UserBehavior.csv

This dataset contains all operation data (including click, purchase, add-on, and favorites)
of one million users at random on e-commerce websites every day. Each row in the
dataset indicates a user behavior, consists of the user ID, offering ID, offering category ID,
behavior type, and timestamp, and is separated by comma (,). Each column in the
dataset is described as follows:

Table 7-1

Column Description

User ID (integer type) Encrypted user ID

Offering ID (integer type) Encrypted offering ID

Offering category ID (integer
type)

ID of the category to which an encrypted offering
belongs

Behavior type (enumeration
type)

Character string, including pv, buy, cart, and fav

Timestamp Timestamp when a behavior occurs, in seconds

Create the resources folder in the src/main directory of the project and save the data file
to the folder.

HCIA-Big Data V3.0 Lab Guide Page 91

Figure 7-16

Figure 7-17

The preceding figure shows the project directory.

Step 3 Compile the HotGoods.Java class.

Create the HotGoods class in the goods package. The code is as follows:

package com.huawei.flink.example.goods;

import java.io.File;
import java.net.URL;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.state.ListState;

HCIA-Big Data V3.0 Lab Guide Page 92

import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.java.io.PojoCsvInputFormat;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.typeutils.PojoTypeInfo;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

public class HotGoods {

 public static void main(String[] args) throws Exception {

 // Step 1 Create the execution environment.
 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
 // Start processing based on EventTime.
 env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
 // To keep the results shown on the console in order, configure concurrency as 1. Changing the
concurrency value does not affect the result accuracy.
 env.setParallelism(1);

 // The /root directory in the Linux file system of UserBehavior.csv
 URL fileUrl = HotGoods.class.getClassLoader().getResource("/root/UserBehavior.csv");
 Path filePath = Path.fromLocalFile(new File(fileUrl.toURI()));
 // To extract TypeInformation of UserBehavior, which is PojoTypeInfo
 PojoTypeInfo<UserBehavior> pojoType = (PojoTypeInfo<UserBehavior>)
TypeExtractor.createTypeInfo(UserBehavior.class);
 // To show the sequence of the fields in a specified file because the sequence of fields extracted
by Java is uncertain
 String[] fieldOrder = new String[]{"userId", "itemId", "categoryId", "behavior", "timestamp"};
 // To create PojoCsvInputFormat
 PojoCsvInputFormat<UserBehavior> csvInput = new PojoCsvInputFormat<>(filePath, pojoType,
fieldOrder);

 env
 // To create data source and obtain DataStream of the UserBehavior type
 .createInput(csvInput, pojoType)
 // To extract time and generate watermark
 .assignTimestampsAndWatermarks(new AscendingTimestampExtractor<UserBehavior>() {
 @Override
 public long extractAscendingTimestamp(UserBehavior userBehavior) {
 // Convert the unit of the source data from seconds to millisecond
 return userBehavior.timestamp * 1000;
 }
 })
 // To filter the click data

HCIA-Big Data V3.0 Lab Guide Page 93

 .filter(new FilterFunction<UserBehavior>() {
 @Override
 public boolean filter(UserBehavior userBehavior) throws Exception {
 // To filter the click data
 return userBehavior.behavior.equals("pv");
 }
 })
 .keyBy("itemId")
 .timeWindow(Time.minutes(60), Time.minutes(5))
 .aggregate(new CountAgg(), new WindowResultFunction())
 .keyBy("windowEnd")
 .process(new TopNHotItems(3))
 .print();

 env.execute("Hot Items Job");
 }

 /** To obtain the top N hot items in a window. key indicates the timestamp of the window. The
output is a character string of TopN. */
 public static class TopNHotItems extends KeyedProcessFunction<Tuple, ItemViewCount, String> {

 private final int topSize;

 public TopNHotItems(int topSize) {
 this.topSize = topSize;
 }

 // To save the states of the stored items and click count, and calculate TopN when all data in a
window is collected
 private ListState<ItemViewCount> itemState;

 @Override
 public void open(Configuration parameters) throws Exception {
 super.open(parameters);
 ListStateDescriptor<ItemViewCount> itemsStateDesc = new ListStateDescriptor<>(
 "itemState-state",
 ItemViewCount.class);
 itemState = getRuntimeContext().getListState(itemsStateDesc);
 }

 @Override
 public void processElement(
 ItemViewCount input,
 Context context,
 Collector<String> collector) throws Exception {

 // Each data record is saved in the item state.
 itemState.add(input);
 // To register EventTime Timer in windowEnd+1. When triggered, it indicates that all item
data in the windowEnd window has been collected.
 context.timerService().registerEventTimeTimer(input.windowEnd + 1);
 }

 @Override
 public void onTimer(

HCIA-Big Data V3.0 Lab Guide Page 94

 long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
 // To obtain the click count of all received items
 List<ItemViewCount> allItems = new ArrayList<>();
 for (ItemViewCount item : itemState.get()) {
 allItems.add(item);
 }
 // To clear data in state in advance to release space
 itemState.clear();
 // To sort by click count in descending order
 allItems.sort(new Comparator<ItemViewCount>() {
 @Override
 public int compare(ItemViewCount o1, ItemViewCount o2) {
 return (int) (o2.viewCount - o1.viewCount);
 }
 });
 // To format the ranking information to String for easy display
 StringBuilder result = new StringBuilder();
 result.append("====================================\n");
 result.append("time: ").append(new Timestamp(timestamp-1)).append("\n");
 for (int i=0; i<allItems.size() && i < topSize; i++) {
 ItemViewCount currentItem = allItems.get(i);
 // No1: item ID=12224 view count=2413
 result.append("No").append(i).append(":")
 .append(" Item ID=").append(currentItem.itemId)
 .append(" View count=").append(currentItem.viewCount)
 .append("\n");
 }
 result.append("====================================\n\n");

 // To control the output frequency and simulate the real-time scrolling result
 Thread.sleep(1000);

 out.collect(result.toString());
 }
 }

 /** To output the result of the window */
 public static class WindowResultFunction implements WindowFunction<Long, ItemViewCount, Tuple,
TimeWindow> {

 @Override
 public void apply(
 Tuple key, // Primary key of the window, that is, itemId
 TimeWindow window, // Window
 Iterable<Long> aggregateResult, // Result of the aggregate function, that is, count value
 Collector<ItemViewCount> collector // Output type: ItemViewCount
) throws Exception {
 Long itemId = ((Tuple1<Long>) key).f0;
 Long count = aggregateResult.iterator().next();
 collector.collect(ItemViewCount.of(itemId, window.getEnd(), count));
 }
 }

 /** COUNT of aggregate function implementation. The value increases by 1 each time a record is
generated. */

HCIA-Big Data V3.0 Lab Guide Page 95

 public static class CountAgg implements AggregateFunction<UserBehavior, Long, Long> {

 @Override
 public Long createAccumulator() {
 return 0L;
 }

 @Override
 public Long add(UserBehavior userBehavior, Long acc) {
 return acc + 1;
 }

 @Override
 public Long getResult(Long acc) {
 return acc;
 }

 @Override
 public Long merge(Long acc1, Long acc2) {
 return acc1 + acc2;
 }
 }

 /** Item click count (output type of the window operation) */
 public static class ItemViewCount {
 public long itemId; // Item ID
 public long windowEnd; // Window end timestamp
 public long viewCount; // Item click count

 public static ItemViewCount of(long itemId, long windowEnd, long viewCount) {
 ItemViewCount result = new ItemViewCount();
 result.itemId = itemId;
 result.windowEnd = windowEnd;
 result.viewCount = viewCount;
 return result;
 }
 }

 /** User behavior data structure **/
 public static class UserBehavior {
 public long userId; // User ID
 public long itemId; // Item ID
 public int categoryId; // Item category ID
 public String behavior; // User behavior, including ("pv", "buy", "cart", "fav")
 public long timestamp; // Timestamp when the behavior occurs, in seconds
 }
}

Step 4 Run the program.

Flink can run on a single server or even a single Java virtual machine (VM). This
mechanism enables users to test or debug Flink programs locally. Now, run the Flink
program locally. You can also refer to task 2 to run the Flink program in the cluster.

HCIA-Big Data V3.0 Lab Guide Page 96

Right-click Run as and choose Java Application from the shortcut menu. Run the main
function. The hot-selling offering IDs at each time point are displayed.

Figure 7-18

7.4 Summary
This exercise describes two cases of implementing the asynchronous CheckPoint
mechanism and real-time hot-selling offerings, and helps trainees learn multiple core
concepts and API usage of Flink, including how to use EventTime, Watermark, State,
Window API, and TopN. It is expected that this exercise can deepen your understanding
of Flink and help you resolve real-world problems.

HCIA-Big Data V3.0 Lab Guide Page 97

8 Kafka Message Subscription Practice

8.1 Background
The Kafka message subscription system plays an important role in big data services,
especially in real-time services. The typical Taobao You May Like service uses Kafka to
store page clickstream data. After the streaming analysis, the analysis result is pushed to
users.

8.2 Objectives
 Understand how to use Kafka shell producers and consumers to generate and

consume data in real time.

8.3 Tasks

8.3.1 Task 1: Producing and Consuming Kafka Messages on the
Shell Side

Step 1 Log in to Kafka.

Use PuTTY to log in to a server and run the source command to set environment
variables.

source /opt/client/bigdata_env

Figure 8-1

Run the cd /opt/client/Kafka/kafka/ command to go to the Kafka directory.

Figure 8-2

Step 2 Create a Kafka topic.

HCIA-Big Data V3.0 Lab Guide Page 98

Run the following command:

bin/kafka-topics.sh --create --zookeeper 192.168.0.151:2181/kafka --partitions 1 --replication-
factor 1 --topic cx_topic2

Figure 8-3

Note: For details about how to obtain the ZooKeeper IP address, see the related content
in the Appendix.

Step 3 View the topic.

Run the following command:

bin/kafka-topics.sh --list --zookeeper 192.168.0.151:2181/kafka

Figure 8-4

Step 4 Create a console consumer.

Run the following command:

bin/kafka-console-consumer.sh --topic cx_topic2 --bootstrap-server 192.168.0.152:9092 --new-
consumer --consumer.config config/consumer.properties

Figure 8-5

Note: The IP address of bootstrap-server is the IP address of the Kafka broker. You can
obtain the IP address by referring to the related content in the Appendix.

After this command is executed, the cx_topic2 data is consumed. Do not perform other
operations in this window or close the window.

Step 5 Create a console producer.

Log in to PuTTY again, run the source command to obtain the environment variables, and
go to the Kafka directory.

HCIA-Big Data V3.0 Lab Guide Page 99

Figure 8-6

Run the following command to create a producer:

bin/kafka-console-producer.sh --broker-list 192.168.0.152:9092 --topic cx_topic2 --
producer.config config/producer.properties

After the command is executed, enter any data.

Figure 8-7

Note: The IP address of broker-list is the broker address of Kafka. For details about how
to obtain the IP address, see the related content in the Appendix.

Step 6 Test the producer and consumer.

Switch to the shell of the consumer. The console data output is displayed.

Figure 8-8

You can continue to enter data on the producer for testing.

8.3.2 Task 2: Using Kafka Consumer Groups
The consumer group is a very interesting design of Kafka. In terms of high concurrency,
multiple servers can be placed in the same consumer group to ensure that all consumers
do not pull the same message and the message is complete, thereby improving execution
efficiency of the consumers.

Step 1 Create a topic.

Create a topic named cx_topic3. For details, see Task 1.

HCIA-Big Data V3.0 Lab Guide Page 100

Figure 8-9

Note that the topic partition is set to 3. Different value settings will lead to different
effects.

For example, to delete the topic, run the bin/kafka-topics.sh --delete --topic cx_*** --
zookeeper 192.168.0.151:2181/kafka command.

Step 2 Create a producer and consumer.

Start the producer.

bin/kafka-console-producer.sh --broker-list 192.168.0.152:9092 --topic cx_topic3 --
producer.config config/producer.properties

Open three PuTTY windows, set environment variables, go to the Kafka directory, and run
the following command to start three consumers:

bin/kafka-console-consumer.sh --topic cx_topic3 --bootstrap-server 192.168.0.152:9092 --consumer-
property group1 --consumer.config config/consumer.properties

Note that you can add --consumer-property group1 to specify consumer group group1.

Step 3 Configure three consumers.

Send the following six messages in sequence in the producer window:

Figure 8-10

Switch to the three consumer windows. It is found that each window consumes two
messages evenly.

HCIA-Big Data V3.0 Lab Guide Page 101

Figure 8-11

Figure 8-12

Figure 8-13

The three consumers evenly consume six messages. Each consumer processes two
messages. This ensures data integrity.

Step 4 Start the fourth consumer.

Open another PuTTY window, set environment variables, go to the Kafka directory, and
run the following command to start the fourth consumer:

bin/kafka-console-consumer.sh --topic cx_topic3 --bootstrap-server 192.168.0.152:9092 --consumer-
property group1 --consumer.config config/consumer.properties

Specify the same consumer group group1.

Figure 8-14

Step 5 Configure four consumers.

Continue to send six messages in sequence in the producer window.

HCIA-Big Data V3.0 Lab Guide Page 102

Figure 8-15

Switch to the four consumer windows:

Figure 8-16

Figure 8-17

Figure 8-18

Figure 8-19

As shown in the preceding figure, a consumer does not have a corresponding partition.
Therefore, the consumer cannot obtain messages. Therefore, when creating topics, you
can create more partitions to ensure that multiple consumers can correspond to the

HCIA-Big Data V3.0 Lab Guide Page 103

partitions, preventing consumers from being wasted. To add partitions, you can run the
kafka-reassign-partitions.sh command.

Step 6 Configure two consumers.

Disable two consumers by pressing Ctrl+C and retain the remaining two consumers.

Enter the following six messages in sequence in the producer window:

Figure 8-20

Check the status of the two consumer windows.

Figure 8-21

Figure 8-22

When two consumers are used, the unexpected phenomenon also occurs. That is,
messages are not evenly distributed. Instead, they are divided into four messages and
two messages. The reason is that one consumer corresponds to two partitions, and the
other corresponds to one partition. Messages are consumed based on partitions.

Check the partitions of the cx_topic3 topic.

HCIA-Big Data V3.0 Lab Guide Page 104

View the consumer group list.

bin/kafka-consumer-groups.sh --bootstrap-server 192.168.0.152:9092 --list

Figure 8-23

View the details about the consumer group.

bin/kafka-consumer-groups.sh --bootstrap-server 192.168.0.152:9092 --describe --group
example-group1

Figure 8-24

As the figure shows, the consumer_id values of partition0 and partition1 are both
consumer-1-404604b8-be64-4a1d-9a15-42b7bf5f475f.

Sometimes, the data consumption sequences of different partitions are different. This is
because Kafka messages are stored by partition, and only messages in the same partition
are pulled in sequence.

8.4 Summary
This exercise describes how to generate and consume data in real time the shell end and
enables trainees to have a deeper understanding of Kafka. Multiple consumers in the
same consumer group are equivalent to one consumer, which improves consumption
efficiency.

HCIA-Big Data V3.0 Lab Guide Page 105

9 Flume Data Collection Practice

9.1 Background
Flume is an important data collection tool in the big data components, and is often used
to collect data from various data sources for other components to analyze. In the log
analysis service, server logs are collected to analyze whether servers are running properly.
In real-time services, data is usually collected to the Kafka for analysis and processing by
real-time components such as streaming and Spark. Flume is an important application in
big data services.

9.2 Objectives
 Configure and use Flume to collect data.

9.3 Tasks

9.3.1 Task 1: Installing the Flume Client

Step 1 Open the Flume service page.

Access the MRS Manager cluster management page and choose Services > Flume.

HCIA-Big Data V3.0 Lab Guide Page 106

Figure 9-1

Step 2 Click Download Client.

Figure 9-2

HCIA-Big Data V3.0 Lab Guide Page 107

Click OK and wait for the download.

Figure 9-3

After the download is complete, a dialog box is displayed, indicating the server (Master
node) to which the file is downloaded. The path is /tmp/MRS-client.

Figure 9-4

HCIA-Big Data V3.0 Lab Guide Page 108

Step 3 Decompress the Flume client installation package.

Use MobaXterm to log in to the ECS of the preceding step and go to the /tmp/MRS-client
directory.

Figure 9-5

Run the following command and decompress the package to obtain the verification file
and client configuration packages:

tar -xvf MRS_Flume_Client.tar

Figure 9-6

Step 4 Verify the file package.

Run the sha256sum -c MRS_Flume_ClientConfig.tar.sha256 command.

If the following information is displayed, the file package is successfully verified:

MRS_Flume_ClientConfig.tar: OK

Step 5 Decompress MRS_Flume_ClientConfig.tar.

Run the tar -xvf MRS_Flume_ClientConfig.tar command.

Figure 9-7

Step 6 Install the Flume environment variables.

HCIA-Big Data V3.0 Lab Guide Page 109

Run the following command to install the client running environment to the new
directory /opt/Flumeenv.

The directory is generated automatically during installation.

sh /tmp/MRS-client/MRS_Flume_ClientConfig/install.sh /opt/Flumeenv

Check the command output. If the following information is displayed, the client running
environment has been successfully installed:

Components client installation is complete.

Figure 9-8

Step 7 Configure the environment variables.

Run the source /opt/Flumeenv/bigdata_env command.

Step 8 Decompress the Flume client.

Run the following commands:

cd /tmp/MRS-client/MRS_Flume_ClientConfig/Flume
tar -xvf FusionInsight-Flume-1.6.0.tar.gz

Figure 9-9

Step 9 Install the Flume client.

Install Flume to the new directory /opt/FlumeClient. The directory is automatically
generated during installation.

Run the following command:

sh /tmp/MRS-client/MRS_Flume_ClientConfig/Flume/install.sh -d /opt/FlumeClient

Figure 9-10

HCIA-Big Data V3.0 Lab Guide Page 110

-d: The Flume client installation path.

If the following information is displayed, the client running environment is successfully
installed:

install flume client successfully.

Step 10 Copy the HDFS configuration file.

Run the following commands to copy the HDFS configuration file to the conf directory of
Flume:

cp /opt/client/HDFS/hadoop/etc/hadoop/hdfs-site.xml /opt/FlumeClient/fusioninsight-flume-
1.6.0/conf/
cp /opt/client/HDFS/hadoop/etc/hadoop/core-site.xml /opt/FlumeClient/fusioninsight-flume-
1.6.0/conf/

Step 11 Restart the Flume service.

Go to the /opt/FlumeClient/fusioninsight-flume-1.6.0 directory and restart the Flume.

Run the following commands:

cd /opt/FlumeClient/fusioninsight-flume-1.6.0
sh bin/flume-manage.sh restart

Figure 9-11

9.3.2 Task 2: Using SpoolDir to Collect and Upload Data to HDFS
Flume uses SpoolDir to monitor folders in a specified path and then collects and uploads
the data in the folders to HDFS. Check that the HDFS and HBase clients are installed.
Flume is mainly used for data collection. Therefore, you need to configure the Flume
based on service requirements.

Step 1 Download the Flume configuration planning tool.

Visit https://support.huawei.com/enterprise/en/doc/EDOC1000113257.

Step 2 Enable macros.

After the decompression, start the Flume configuration planning tool. If macros are
disabled, enable them. Otherwise, the tool does not work.

Figure 9-12

Step 3 Configure parameters.

https://support.huawei.com/enterprise/en/doc/EDOC1000113257

HCIA-Big Data V3.0 Lab Guide Page 111

In the Flume Name row of the first sheet, select client. Then, switch to the Flume
Configuration row of the second sheet.

Figure 9-13

Step 4 Configure the source.

Click Add Source and configure the parameters as follows:

SourceName: s1. The value cannot be empty.

type: spooldir. In this exercise, data in the static folder is collected and uploaded to the
HDFS.

spoolDir: /tmp/flume_spooldir, which is the folder monitored by Flume.

channel: s-c1. The value cannot be empty.

Retain the default values for other parameters, as shown in the following figure:

HCIA-Big Data V3.0 Lab Guide Page 112

Figure 9-14

HCIA-Big Data V3.0 Lab Guide Page 113

Figure 9-15

HCIA-Big Data V3.0 Lab Guide Page 114

Figure 9-16

HCIA-Big Data V3.0 Lab Guide Page 115

Figure 9-17

Step 5 Configure a channel.

Click Add Channel. Set ChannelName to c1, which corresponds to that in Source, set type
to memory, and retain the default values for other parameters.

HCIA-Big Data V3.0 Lab Guide Page 116

Figure 9-18

Step 6 Configure a sink.

Click Add Sink and configure the parameters as follows:

SinkName: sh1

type: hdfs

hdfs.path: hdfs://hacluster/user/stu02/. The stu02 directory is automatically created by
the system.

channel:-c1. The name is the same as the channel name.

Retain the default values for other parameters, as shown in the following figure:

HCIA-Big Data V3.0 Lab Guide Page 117

Figure 9-19

HCIA-Big Data V3.0 Lab Guide Page 118

Figure 9-20

Note: The MRS cluster is in non-security mode. Therefore, you do not need to configure
Kerberos in the sink.

Step 7 Generate a configuration file.

Click Generate a configuration file in the upper right corner. A properties.properties
configuration file is automatically generated in the Excel file and saved in the same
directory as the configuration tool.

Figure 9-21

HCIA-Big Data V3.0 Lab Guide Page 119

Figure 9-22

Step 8 Create /tmp/flume_spooldir in Linux

The commands are as follows:

Figure 9-23

Step 9 Upload the Flume configuration file.

Use WinSCP to upload properties.properties to the following directory:

/opt/FlumeClient/fusioninsight-flume-1.6.0/conf/

Figure 9-24

HCIA-Big Data V3.0 Lab Guide Page 120

Note: The Flume client automatically loads the properties.properties file.

Step 10 Write a file for testing.

Go to the /tmp/flume_spooldir directory, run the vi command to create the test1.txt file,
and enter any content.

Figure 9-25

Step 11 View the result.

Figure 9-26

The data is successfully collected and uploaded to the HDFS. You can continue to create
a data file for testing.

9.3.3 Task 3: Using SpoolDir to Collect and Upload Data to Kafka
Flume uses SpoolDir to monitor folders in a specified path and then collects and uploads
the data in the folders to Kafka. The consumers can read the data on the console.

Step 1 Modify the Flume configuration file.

On the tool description page of the configuration tool, change server to client.

Figure 9-27

If the FlumeServer is deployed in a cluster, set this parameter to server. If the
FlumeServer is not deployed in a cluster, set this parameter to client.

Step 2 Modify Sink configurations.

In the Flume configuration planning tool, change type of sink to kafka and set the value
of kafka.bootstrap.servers.

HCIA-Big Data V3.0 Lab Guide Page 121

Figure 9-28

kafka.topic: cx_topic1

kafka.bootstrap.servers: 192.168.0.152:9092. If there are multiple Kafka instances in the
cluster, you need to configure all of them. If the Kafka is installed in the cluster and
configuration has been synchronized, you do not need to configure this parameter.

kafka.security.protocol: PLAINTEXT. The cluster used in this exercise is a non-security
cluster.

After the configuration is complete, click Generate a configuration file.

Step 3 Create a Kafka topic.

Go to the Kafka directory cd /opt/client/Kafka/kafka and run the following command:

bin/kafka-topics.sh --create --zookeeper 192.168.0.151:2181/kafka --partitions 1 --replication-
factor 1 --topic cx_topic1

HCIA-Big Data V3.0 Lab Guide Page 122

Figure 9-29

Note: You can obtain the IP address of the ZooKeeper by referring to the related content
in the Appendix.

Step 4 Upload the Flume configuration file.

Use WinSCP to upload properties.properties to the following directory:

/opt/FlumeClient/fusioninsight-flume-1.6.0/conf/

Figure 9-30

Note: The Flume client automatically loads the properties.properties file.

Step 5 Create a console consumer.

Run the following command in the Kafka directory:

bin/kafka-console-consumer.sh --topic cx_topic1 --bootstrap-server 192.168.0.152:9092 --new-
consumer --consumer.config config/consumer.properties

HCIA-Big Data V3.0 Lab Guide Page 123

Figure 9-31

Note: The IP address of bootstrap-server corresponds to the IP address of the Kafka
instance. You can obtain the IP address by referring to the related content in the
Appendix.

After this command is executed, the cx_topic1 data is consumed. Do not perform other
operations in this window or close it.

Step 6 Test data.

On PuTTY, open a shell connection (do not close the consumer window that is just
started) and go to the /tmp/flume_spooldir directory.

Run the vi command to edit the testkafka.txt file, enter any content, save the file, and
exit.

Figure 9-32

Step 7 View the result.

Switch back to the shell window of the consumer. The data output is displayed.

Figure 9-33

9.4 Summary
This exercise mainly describes how to collect data using Flume SpoolDir and Avro
sources. This exercise aims to help trainees better understand Flume by learning common
offline and real-time data collection methods.

HCIA-Big Data V3.0 Lab Guide Page 124

10 Loader Data Import and Export
Practice

10.1 Background
Big data services often involve data migration, especially data migration between
relational databases and big data components. Loader is often used to migrate data
between MySQL and HDFS/HBase. The graphical operations of Loader make data
migration easier.

10.2 Objectives
 Use Loader to migrate data in service scenarios.

10.3 Tasks

10.3.1 Task 1: Preparing MySQL Data

Step 1 Apply for the MySQL service.

Log in to the HUAWEI CLOUD website at https://www.huaweicloud.com/en-us/ and
choose Products > Database > RDS for MySQL.

HCIA-Big Data V3.0 Lab Guide Page 125

Figure 10-1

Click Buy Now and configure the database instance information as follows:

Billing Mode: Pay-per-use

Region: CN East-Shanghai2 (the same region as MRS)

DB Instance Name: Enter a custom name. In this exercise, rds_loader is used as an
example. The instance name must start with a letter and contain 4 to 64 characters. Only
letters, digits, hyphens (-), and underscores (_) are allowed.

DB Engine: MySQL

DB Engine Version: 5.6

DB Instance Type: Single

AZ: default value

Time Zone: default value

Instance Class: 1 vCPU | 2 GB

Storage Type: Ultra-high I/O

Storage Space: 40 GB

Disk Encryption: Disable

VPC: default value (the same network as MRS)

Security Group: default value (the same security group as MRS)

Administrator: root

Administrator Password: set the password as required.

Parameter Template: default value

Tag: not specified

Quantity: 1

HCIA-Big Data V3.0 Lab Guide Page 126

Confirm the information and click Next.

Figure 10-2

Step 2 Log in to MySQL.

After the RDS for MySQL DB instance is created, click Log In and enter username root
and password to log in to the MySQL DB instance.

Figure 10-3

The MySQL data service management page is displayed.

Figure 10-4

Step 3 Create a database.

Click Create Database, enter a database name, for example, rdsdb, set Character Set to
utf8, and click OK.

HCIA-Big Data V3.0 Lab Guide Page 127

Figure 10-5

Step 4 Create a table.

In the list on the left, choose rdsdb. On the displayed page, click Create Table, name the
table, and change the character set, as shown in the following figure:

Figure 10-6

Click Next, and then Add, and set the fields as follows:

HCIA-Big Data V3.0 Lab Guide Page 128

Figure 10-7

Set id to the primary key and click Next. Do not set the index and foreign key. Then click
Create Now.

Figure 10-8

Click Execute.

Step 5 Insert data.

Click the SQL operation button in the upper part, select SQL Window, select the rdsdb
database on the left, and enter the following statement in the SQL window:

insert into cx_student(id,name,gender,age) VALUES('1001','MacDonald','male','30');
insert into cx_student(id,name,gender,age) VALUES('1002','Calvin','male','25');
insert into cx_student(id,name,gender,age) VALUES('1003','Haley','female','18');
insert into cx_student(id,name,gender,age) VALUES('1004','Madonna','female','22');
insert into cx_student(id,name,gender,age) VALUES('1005','Randell','male','36');

HCIA-Big Data V3.0 Lab Guide Page 129

Figure 10-9

Click Execute SQL to insert data.

10.3.2 Task 2: Configuring the MySQL Driver of Loader
In the Loader service of MRS, the default MySQL connection JAR package is 5.1.12.
Therefore, you need to update the MySQL connection JAR package.

Step 1 Download the MySQL driver package.

Visit http://mvnrepository.com/artifact/mysql/mysql-connector-java/5.1.21 to go to the
maven repository and download the MySQL JDBC driver mysql-connector-java-5.1.21.jar.
Make sure that the version number is the same. Click jar to download the driver.

HCIA-Big Data V3.0 Lab Guide Page 130

Figure 10-10

Step 2 Upload the JAR file.

Start WinSCP, connect to the master node, and upload the MySQL JAR package to the
/opt/Bigdata/MRS_2.1.0/1_18_Sqoop/install/FusionInsight-Sqoop-1.99.7/server/jdbc
directory.

Figure 10-11

Note: If the MRS cluster is highly available, upload the package to each master node. In
this exercise, the HA function is not enabled for the MRS cluster. You only need to upload
the package to one master node.

Step 3 Modify the properties of mysql-connector-java-5.1.21.jar.

Start PuTTY, go to the /opt/Bigdata/MRS_2.1.0/1_18_Sqoop/install/FusionInsight-Sqoop-
1.99.7/server/jdbc directory, and change the owner of the mysql-connector-java-5.1.21.jar
package to omm:wheel.

Run the following command:

chown omm:wheel mysql-connector-java-5.1.21.jar

After the modification, run the ll command to view the result.

Figure 10-12

Note: If the MRS cluster is highly available, you need to modify this attribute on each
master node. In this exercise, the HA function is not enabled for the MRS cluster. You
only need to modify the attribute for server master nodes.

Step 4 Modify the jdbc.properties configuration file on the master node.

HCIA-Big Data V3.0 Lab Guide Page 131

Modify the jdbc.properties file in the folder in the previous step. Change the key value of
MySQL to the name of the uploaded JDBC driver package mysql-connector-java-
5.1.21.jar. If the name is already mysql-connector-java-5.1.21.jar, you do not need to
change it.

Figure 10-13

Note: If the MRS cluster is in HA mode, you need to change the value of this parameter
on each master node. In this exercise, the HA function is not enabled for the MRS cluster.
You only need to change the value of this parameter on one master node.

Step 5 Restart the Loader service.

Log in to the MRS management page. On the Services tab page, click Loader.

Figure 10-14

Choose More > Restart Service.

HCIA-Big Data V3.0 Lab Guide Page 132

Figure 10-15

Enter the verification password and click OK. In the Restart Service dialog box, select
Restart all upper-layer services, and wait for the service to restart.

Figure 10-16

Wait for the service to restart.

HCIA-Big Data V3.0 Lab Guide Page 133

Figure 10-17

10.3.3 Task 3: Creating a Loader Link

Step 1 Log in to Hue.

Log in to MRS Manager and choose Service Hue> Service Status. Click Hue (Active) to
access the Hue page.

HCIA-Big Data V3.0 Lab Guide Page 134

Figure 10-18

Step 2 Access Sqoop.

The open-source framework Sqoop is Loader in Huawei products. Click Sqoop in the Data
Browsers drop-down list. The Sqoop page is displayed.

Figure 10-19

HCIA-Big Data V3.0 Lab Guide Page 135

Figure 10-20

Step 3 Create a MySQL link.

In the upper right corner, choose Manage links > New link.

Figure 10-21

Name: cx_mysql_conn

Connector: generic-jdbc-connector

Database type: MySQL

Host: Enter the private IP address of the MySQL instance, as shown in the following
figure:

Figure 10-22

Port: 3306

Database: rdsdb

Username: root

Password: the password of user root set when you apply for the MySQL service

HCIA-Big Data V3.0 Lab Guide Page 136

Figure 10-23

HCIA-Big Data V3.0 Lab Guide Page 137

Figure 10-24

After the configuration is complete, click Test. If the testing succeeds, click Save. The
MySQL link is created.

Step 4 Create a HBase link.

Click New link and set the parameters as follows:

Name: cx_hbase_conn

Connector: hbase-connector

After the configuration is complete, click Test. If the testing succeeds, click Save.

HCIA-Big Data V3.0 Lab Guide Page 138

Figure 10-25

Step 5 Create a Hive link.

Click New link and set the parameters as follows:

Name: cx_hive_conn

Connector: hive-connector

After the configuration is complete, click Test. If the testing succeeds, click Save.

Figure 10-26

Step 6 Create an HDFS link.

Click New link and set the parameters as follows:

Name: cx_hdfs_conn

Connector: hdfs-connector

After the configuration is complete, click Test. If the testing succeeds, click Save.

HCIA-Big Data V3.0 Lab Guide Page 139

Figure 10-27

10.3.4 Task 4: Importing MySQL Data to HDFS

Step 1 Prepare MySQL data.

MySQL tables and data have been prepared in task 1. The data is as follows:

Figure 10-28

Step 2 Log in to Hue and create a job.

On the Sqoop page of Hue, click Create Job and set the parameters as follows:

HCIA-Big Data V3.0 Lab Guide Page 140

Figure 10-29

Click Next.

Step 3 Configure MySQL.

Set Schema name to rdsdb, Table name to cx_student, and Partition column to id, as
shown in the following figure:

Figure 10-30

Click Next.

Step 4 Configure HDFS.

HCIA-Big Data V3.0 Lab Guide Page 141

Set Output directory to the /user/stu01/output2 directory. Retain the default values for
other parameters, as shown in the following figure:

Figure 10-31

Note: If output2 does not exist, the system automatically creates one.

Step 5 Configure a task.

Set Extractors to 1 and click Save and execute.

Figure 10-32

The task is successfully run.

Figure 10-33

Step 6 View the result.

HCIA-Big Data V3.0 Lab Guide Page 142

Use PuTTY to log in to the master node and go to the HDFS directory to view data files.

Figure 10-34

10.3.5 Task 5: Importing MySQL Data to Hive

Step 1 Prepare a MySQL table.

Use the cx_student table data as the MySQL data.

Step 2 Create a table in Hive.

Use PuTTY to log in to a master node, go to Hive, and run the following statement to
create a table:

create table cx_loader_stu01(id int,name string,gender string ,age int) row format delimited fields
terminated by ',' stored as textfile ;

Figure 10-35

Step 3 Log in to Hue and create a job.

Click Create Job and set the parameters as follows:

HCIA-Big Data V3.0 Lab Guide Page 143

Figure 10-36

Click Next.

Step 4 Configure MySQL.

Set Schema name to rdsdb, Table name to cx_student, and Partition column to id, as
shown in the following figure:

Figure 10-37

Click Next.

Step 5 Configure Hive.

Retain the default database name default and set Table to cx_loader_stu01, as shown in
the following figure:

HCIA-Big Data V3.0 Lab Guide Page 144

Figure 10-38

Step 6 Configure the field mapping.

Retain the default settings.

Figure 10-39

Click Next.

Step 7 Configure a task.

Set Extractors to 1 and click Save and execute.

HCIA-Big Data V3.0 Lab Guide Page 145

Figure 10-40

The task is successfully run.

Figure 10-41

Step 8 View the result.

Use PuTTY to log in to the master node, run the beeline command to go to Hive, and run
the select statement to view the result.

select * from cx_loader_stu01;

Figure 10-42

HCIA-Big Data V3.0 Lab Guide Page 146

10.3.6 Task 6: Importing HDFS Data to HBase

Step 1 Create a HBase table.

Use PuTTY to log in to the master node, run hbase shell to go to the HBase window, and
run the following statement to create a table:

create 'cx_table_stu02','cf1'

Figure 10-43

Step 2 Create a data file and upload it to the HDFS.

Edit data file cx_stu_info2.txt on the Linux PC. The file content is as follows:

Figure 10-44

Run the following command to upload the file to the HDFS:

hdfs dfs -put cx_stu_info2.txt /user/stu01

Figure 10-45

Step 3 Log in to the Hue page and create a job.

Click Create Job and set the parameters as follows:

HCIA-Big Data V3.0 Lab Guide Page 147

Figure 10-46

Click Next.

Step 4 Configure the source path.

The input path is the path of the HDFS file to be imported. The configuration is as
follows:

Figure 10-47

Click Next.

Step 5 Configure HBase information.

Set Table name to cx_stu_info2 and Method to PUTLIST, as shown in the following figure:

Figure 10-48

Click Next.

HCIA-Big Data V3.0 Lab Guide Page 148

Step 6 Configure the field mapping.

The following figure shows the configuration information:

Figure 10-49

Select Row Key in the first row, name the destination field, which the qualifier of the
column in HBase, and click Next.

Step 7 Configure a task.

Set Extractors to 1 and click Save and execute.

Figure 10-50

The task is successfully run.

Figure 10-51

Step 8 View the result.

Log in to HBase and run the scan command to view the table data.

HCIA-Big Data V3.0 Lab Guide Page 149

Figure 10-52

10.4 Summary
This exercise describes how to use Loader in multiple service scenarios. Trainees can
perform data migration operations in actual services after completing this exercise. Note
that tables must be created before table data is migrated among MySQL, HBase, and
Hive. Otherwise, an error may occur and the exercise may fail.

HCIA-Big Data V3.0 Lab Guide Page 150

11 Comprehensive Exercise: Hive Data
Warehouse

11.1 Background
In the big data services, multiple components form a service system. The following two
exercises involve these components.

The first one is a typical data analysis exercise. Loader periodically migrates MySQL
database data to Hive. Because data in Hive is stored in HDFS, Loader is used to import
data in the HDFS to HBase. Use HBase to query data in real time and use the big data
processing capability of Hive to analyze related results.

The second one is to use Flume to collect incremental data, upload the data to HDFS,
and use Hive to query and analyze the data.

11.2 Objectives
 Use big data components to convert and query data in real time.

11.3 Tasks
Data is imported from the MySQL database to Hive, and then imported from Hive to
HBase for data analysis.

11.3.1 Preparing MySQL Data

Step 1 Log in to the MySQL database.

Go to the MySQL instance page and click Log In. You can use MySQL resources
purchased in section 11.3. If no MySQL resource is available, purchase one.

HCIA-Big Data V3.0 Lab Guide Page 151

Figure 11-1

Step 2 Create the cx_socker table and set timestr as the primary key.

Create the rdsdb database (if there is no such a database) and create a table.

Figure 11-2

Create a field.

HCIA-Big Data V3.0 Lab Guide Page 152

Figure 11-3

Click Create Now and execute the script.

Step 3 Import data to cx_socker.

On the MySQL management page, choose Import·Export > Import.

Figure 11-4

Click Create Task. By default, no bucket is available. Click Create OBS bucket.

HCIA-Big Data V3.0 Lab Guide Page 153

Figure 11-5

Click OK to return to the import page. Select data file sp500.csv and upload it. The
configuration is as follows:

Figure 11-6

Click Create Import Task and wait for the task to be executed.

Figure 11-7

HCIA-Big Data V3.0 Lab Guide Page 154

The execution succeeded.

Figure 11-8

Step 4 View data in cx_socker.

On the database management page, click Query.

Figure 11-9

Detailed data is shown as follows:

Figure 11-10

11.3.2 Importing MySQL Data to Hive

Step 1 Create a table in Hive.

Log in to Hive and run the following command to create the cx_hive_socker table:

create table cx_hive_socker (timestr string,open float,high float,low float,close float,volume
string,endprice float) row format delimited fields terminated by ',' stored as textfile;

Figure 11-11

Step 2 Log in to Hue and create a job in Sqoop.

Configure parameters as follows:

HCIA-Big Data V3.0 Lab Guide Page 155

Figure 11-12

Step 3 Set the MySQL information for the job.

Configure parameters as follows:

Figure 11-13

Step 4 Configure the Hive information for the job.

Configure parameters as follows:

HCIA-Big Data V3.0 Lab Guide Page 156

Figure 11-14

Step 5 Configure the field mapping.

Retain the default values.

Figure 11-15

Click Next.

Step 6 Configure a task.

Set Extractors to 1 and click Save and execute.

HCIA-Big Data V3.0 Lab Guide Page 157

Figure 11-16

The task is successfully run.

Figure 11-17

Step 7 View data in Hive.

Run the select * from cx_hive_socker limit 10 command in Hive.

Figure 11-18

HCIA-Big Data V3.0 Lab Guide Page 158

11.3.3 Processing Hive Data
Obtain the latest stock growth data and save the result to a new Hive table.

Step 1 Create a table in Hive.

Run the following command in the Hive shell to create a table:

create table cx_up_hive_socker like cx_hive_socker;

Figure 11-19

Step 2 Run the following command to insert data:

insert into cx_up_hive_socker select * from cx_hive_socker where cx_hive_socker.endprice>
cx_hive_socker.open sort by cx_hive_socker.endprice desc;

Figure 11-20

Step 3 Run the following command to obtain the total number of the stocks that grow:

select count(*) from cx_hive_socker where cx_hive_socker.endprice> cx_hive_socker.open;

HCIA-Big Data V3.0 Lab Guide Page 159

Figure 11-21

11.3.4 Importing HDFS Data to HBase

Step 1 Create a table in HBase.

Access the hbase shell and run the following statement to create a table:

create 'cx_hbase_socker','cf1'

Figure 11-22

Step 2 Create a Loader job.

Configure parameters as follows:

Figure 11-23

Step 3 Configure the source path.

The input path is the path of the HDFS file to be imported. The address is the data in the
Hive table cx_hive_socker, and is in the Hive data warehouse directory of the HDFS, as
shown in the following figure:

HCIA-Big Data V3.0 Lab Guide Page 160

Figure 11-24

To configure the HDFS address of the Loader job, you need to query the specific path. In
this example, the HDFS path is as follows:

/user/hive/warehouse/cx_hive_socker/60f9ba12-3a37-472f-baaf-1b092c82740f

The HDFS configuration of the job is as follows:

Figure 11-25

Click Next.

Step 4 Configure the HBase information.

Configure parameters as follows:

Figure 11-26

Click Next.

Step 5 Configure the field mapping.

HCIA-Big Data V3.0 Lab Guide Page 161

Configure parameters as follows:

Figure 11-27

Click Next.

Step 6 Configure a task.

Set Extractors to 1 and click Save and execute.

Figure 11-28

The task is successfully run.

Figure 11-29

Step 7 View the result.

Log in to HBase and run the scan command to view the table data.

HCIA-Big Data V3.0 Lab Guide Page 162

Figure 11-30

11.3.5 Querying Data in HBase in Real Time

Step 1 Query specified records.

Run the following command in HBase:

get 'cx_hbase_socker','2009-09-15'

Figure 11-31

Step 2 Query the number of records in a specified period.

Run the following command in HBase:

scan 'cx_hbase_socker',{COLUMNS=>'cf1:endprice',STARTROW=>'2009-08-15',STOPROW=>'2009-09-
15'}

HCIA-Big Data V3.0 Lab Guide Page 163

Figure 11-32

Step 3 Queries all columns whose values are greater than a specified value. Values are
compared as character strings.

Run the following command in HBase:

scan 'cx_hbase_socker',{FILTER => "ValueFilter(>,'binary:999')"}

Figure 11-33

Step 4 Query all information ending with endprice. The value of the character string must
be greater than 999.

Run the following command in HBase:

scan 'cx_hbase_socker',{FILTER=>"ValueFilter(>,'binary:999') AND ColumnPrefixFilter('endprice')"}

Figure 11-34

HCIA-Big Data V3.0 Lab Guide Page 164

11.4 Summary
These exercises integrate the applications of each component, helping trainees better
understand and use big data components.

HCIA-Big Data V3.0 Lab Guide Page 165

12 Appendix: Environment Preparations
and Commands

12.1 (Optional) Preparing the Java Environment

12.1.1 Installing JDK

Step 1 Download JDK.

Visit https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html, select Accept License Agreement, and download the JDK of the Windows
x64 version. If the operating system is 32-bit, select the x86 version.

Figure 12-1

Step 2 Double-click the downloaded .exe file and click Next.

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

HCIA-Big Data V3.0 Lab Guide Page 166

Figure 12-2

Step 3 Select the installation path. You can use the default address.

Figure 12-3

Step 4 On the Change in License Terms page, click OK.

HCIA-Big Data V3.0 Lab Guide Page 167

Figure 12-4

Step 5 Retain the default address and click Next.

Figure 12-5

Wait for the installation to complete.

HCIA-Big Data V3.0 Lab Guide Page 168

Figure 12-6

After the installation is complete, click Close.

Figure 12-7

Step 6 Configure JDK environment variables.

HCIA-Big Data V3.0 Lab Guide Page 169

Choose My Computer > Properties > Advanced system settings > Environment Variables.

Figure 12-8

Click New in the System variables area. Set Variable name to JAVA_HOME (all uppercase
letters) and Variable value to the JDK installation path.

Figure 12-9

Find Path in the system variables and edit the variable.

HCIA-Big Data V3.0 Lab Guide Page 170

Figure 12-10

Add a semicolon (;) at the end of the variable value, and then add %JAVA_HOME%\bin.

Figure 12-11

Step 7 Check whether the JDK is installed successfully.

Choose Start > Run, enter cmd, and press Enter. In the displayed dialog box, enter java -
version.

Figure 12-12

If the Java version information is displayed, the installation is successful.

12.1.2 Installing Apache Maven

Step 1 Install Apache Maven.

Maven is a software project management tool that manages project construction,
reports, and documents through a small segment of description information. In short,
Maven is one of the tools for managing Java projects.

After Maven is used, third-party JAR packages such as spring.jar and hibernate.jar do not
need to be copied to the lib directory of the project each time. The Maven configuration
file can be used to automatically import JAR packages to the project. Programmers do
not need to manually copy the JAR packages.

Download the latest version at http://maven.apache.org/download.cgi and decompress it
to the D:\apache-maven-3.5.0 directory.

HCIA-Big Data V3.0 Lab Guide Page 171

Figure 12-13

Add MAVEN_HOME or M2_HOME to the system environment variables. Its value is the
Maven installation directory D:\apache-maven-3.5.0.

HCIA-Big Data V3.0 Lab Guide Page 172

Figure 12-14

Step 2 Verify the Maven installation.

Press Win+R to open the Run window, enter cmd, and run the mvn -version command to
check the version.

Figure 12-15

12.1.3 Installing Eclipse

Step 1 Download Eclipse.

Visit https://www.eclipse.org/downloads/packages/ and click Downloads on the menu
bar.

Figure 12-16

Step 2 Select a version to download.

Select 64-bit to download. If the computer is 32-bit, click Download Packages and select
32-bit to download.

https://www.eclipse.org/downloads/packages/

HCIA-Big Data V3.0 Lab Guide Page 173

Figure 12-17

Step 3 Decompress the downloaded package and go to the folder. The following figure
shows the Eclipse startup program.

Figure 12-18

Double-click the program to start it. If you open the tool for the first time, you need to
configure a workspace. You can select another location or use the default drive C. Then
click OK.

Figure 12-19

Step 4 Choose Help > Eclipse Marketplace, search for Maven, and click Install to Install the
Maven plug-in in Eclipse.

HCIA-Big Data V3.0 Lab Guide Page 174

Figure 12-20

Step 5 Choose Window > Preferences > Maven > User Settings and configure the Maven in
the installation directory.

Figure 12-21

Step 6 Download the MRS2.0 sample code.

The address for downloading the sample project of MRS on HUAWEI CLOUD is
https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-2.0.

https://github.com/huaweicloud/huaweicloud-mrs-example/tree/mrs-2.0

HCIA-Big Data V3.0 Lab Guide Page 175

Figure 12-22

Download the ZIP package and decompress it.

Figure 12-23

12.1.4 Importing an MRS 2.0 Sample Project to Eclipse

Step 1 Create a working set in Eclipse.

Start Eclipse, choose File > New > Java Working Set, enter the name, for example,
MRS2.0Demo, and click Finish.

HCIA-Big Data V3.0 Lab Guide Page 176

Figure 12-24

Step 2 Import a sample project to Eclipse.

Decompress the package and start Eclipse. Then choose File > Import.

HCIA-Big Data V3.0 Lab Guide Page 177

Figure 12-25

Click Browse, select the huaweicloud-mrs-example-mrs-2.0 sample project folder in the
decompressed package, select Add project to working set, select the MRS2.0Demo
created in the previous step, and click Finish.

HCIA-Big Data V3.0 Lab Guide Page 178

Figure 12-26

Wait until the Maven dependency package is loaded.

Figure 12-27

If an error is reported, ignore it and click OK.

Step 3 Modify the pom file.

Double-click the pom file in the mapreduce-examples project.

HCIA-Big Data V3.0 Lab Guide Page 179

Figure 12-28

Switch to the pom.xml page and add the following code, where the repositories code
after the dependencies tag.

<repositories>

 <repository>
 <id>huaweicloudsdk</id>
 <url>https://mirrors.huaweicloud.com/repository/maven/huaweicloudsdk/</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>

 <repository>
 <id>central</id>
 <name>Mavn Centreal</name>
 <url>https://repo1.maven.org/maven2/</url>
 </repository>
</repositories>

For details about the code, go to https://support.huaweicloud.com/en-us/devg-
mrs/mrs_06_0002.html.

Figure 12-29

https://support.huaweicloud.com/en-us/devg-mrs/mrs_06_0002.html
https://support.huaweicloud.com/en-us/devg-mrs/mrs_06_0002.html

HCIA-Big Data V3.0 Lab Guide Page 180

The modifications are as follows:

Figure 12-30

After saving the file, wait for Eclipse to download the JAR package and keep the network
connection. Maven downloads the required JAR package from the Huawei image
repository.

If the pom reports an error stating "Missing artifact jdk.tools:jdk.tools:jar:1.8", add the
following information to the pom.xml file:

<dependency>
 <groupId>jdk.tools</groupId>
 <artifactId>jdk.tools</artifactId>
 <version>1.8</version>
 <scope>system</scope>
 <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>

The following figure shows the content added to the pom.xml file:

HCIA-Big Data V3.0 Lab Guide Page 181

Figure 12-31

Step 4 Modify the pom file.

Add the marked code to the pom file, indicating that the JAR package of the Gauss
database is not introduced to the project.

Figure 12-32

<exclusion> <groupId>com.huawei.gaussc10</groupId>
 <artifactId>gauss</artifactId>
</exclusion>

Step 5 Modify the Java dependency.

Right-click the project name and choose Build Path > Configure Build Path from the
shortcut menu.

Select JRE System Library[J@SE-1.5], click Remove, click Add Library, select JRE System
Library, and click Next.

HCIA-Big Data V3.0 Lab Guide Page 182

Figure 12-33

Select JDK1.8 from the Alternate JRE drop-down list and click Finish.

Figure 12-34

HCIA-Big Data V3.0 Lab Guide Page 183

Select Java Compiler, set Compiler compliance level to 1.8, and click OK.

Figure 12-35

Select Yes.

Figure 12-36

The project architecture is as follows:

Figure 12-37

12.2 Binding an EIP to an ECS
Step 1 Access the cluster node management page.

HCIA-Big Data V3.0 Lab Guide Page 184

Click the cluster name in the cluster list and click Nodes.

Figure 12-38

Step 2 Log in to the server where the streaming core is located.

Click a node name under core_node_streaming_group, as shown in the following figure:

Figure 12-39

HCIA-Big Data V3.0 Lab Guide Page 185

Select EIP and click View EIP to purchase an IP address. If you have purchased sufficient
IP addresses when creating a cluster, click Bind EIP. Select Pay-per-use. After the
purchase is complete, the Elastic Cloud Server page is displayed.

Figure 12-40

Step 3 Bind an IP address.

Click Bind EIP.

Figure 12-41

Select an IP address and click OK.

HCIA-Big Data V3.0 Lab Guide Page 186

Figure 12-42

Refresh the page. You can see that the EIP is bound successfully.

Figure 12-43

12.3 Viewing the IP address of ZooKeeper
Step 1 Log in to the MRS cluster management page.

HCIA-Big Data V3.0 Lab Guide Page 187

Figure 12-44

Step 2 Log in as user admin.

Figure 12-45

Step 3 Check the status of the Zookeeper service.

Choose Services > Service ZooKeeper > Instance. The business IP address of ZooKeeper is
displayed.

HCIA-Big Data V3.0 Lab Guide Page 188

Figure 12-46

12.4 Viewing the IP Address of a Kafka Broker Instance
Step 1 Log in to the MRS cluster management page.

Figure 12-47

Step 2 Log in as user admin.

HCIA-Big Data V3.0 Lab Guide Page 189

Figure 12-48

Step 3 Check the status of the Zookeeper service.

Choose Services > Service Kafka > Instance. The business IP address of the Kafka Broker is
displayed.

Figure 12-49

12.5 Common Linux Commands

cd /home: to go to the /home directory.

HCIA-Big Data V3.0 Lab Guide Page 190

cd..: to move one directory up.
cd ../..: to move two directories up.
cd: to go to the personal home directory.
cd ~user1: to go to the personal home directory.
cd -: to move to your previous directory.
pwd: to show the current working directory you are in.
ls: to view files in the directory.
ls -F: to view files in a directory.
ls -l: to show details about files and directories.
ls -a: to show the hidden files.
ls *[0-9]*: to show hidden file names and directory names that contain digits.
tree: to show the contents of a directory in a tree-like format (1).
lstree: to show the contents of a directory in a tree-like format (2).
mkdir dir1: to create a directory named dir1.
mkdir dir1 dir2: to create two directories at the same time.
mkdir -p /tmp/. dir1/dir2: to create a directory tree.
rm -f file1: to delete a file named file1.
rmdir dir1: to delete a directory named dir1.
rm -rf dir1: to delete a directory named dir1 and its content.
rm -rf dir1 dir2: to delete two directories and their contents.
mv dir1 new_dir: to rename/move a directory.
cp file1 file2: to copy a file.
cp dir/*: to copy all files in a directory to the current working directory.
cp -a /tmp/dir1: to copy a directory to the current working directory.
cp -a dir1 dir2: to copy a directory.
ln -s file1 lnk1: to create a soft link to a file or directory.

12.6 HDFS Commands
The fsck command is executed in HDFS to check data inconsistency. The fsck command
can report file problems, such as block loss or lack of blocks.

The usage of the fsck command is as follows:

hdfs fsck <path> [-move | -delete | -openforwrite] [-files [-blocks [-locations | -racks]]]
<path>: start directory to be checked
-move: to move the damaged file to /lost+found
-delete: to delete the damaged file
-openforwrite: to show the file that is being written
-files: to show all checked files
-blocks: to show the block report
-locations: to show the location of each block
-racks: to show the network topology of the DataNode

By default, fsck ignores files that are being written, and you can use the -openforwrite
option to report such files.

Run the hdfs fsck /1001/hive.log –racks command to view the topology information of
/1001/hive.log.

HCIA-Big Data V3.0 Lab Guide Page 191

Figure 12-50

hdfs fsck /1001/hive.log -files -blocks -locations –racks

The detailed information about each block in the file is displayed, including the rack
information of the DataNode.

12.7 Yarn Application Operation Commands
1. Run the following command to check all applications on Yarn:

yarn application -list

In the Flink exercise, the yarn-session.sh script is used to start a Flink cluster. This is a
Yarn application. Run the following command to view the Yarn application:

Figure 12-51

2. Run the following command to kill the Yarn application:

yarn application -kill application id

For example, to kill a Flink cluster application, run the -list command to view the ID, and
then run the kill command.

HCIA-Big Data V3.0 Lab Guide Page 192

Figure 12-52

	1 About This Document 0111
	1.1 Introduction
	1.2 Content Description
	1.3 Precautions
	1.4 References
	1.5 MRS Architecture

	2 HDFS Practice
	2.1 Background
	2.2 Objectives
	2.3 Tasks
	2.3.1 Task 1: Understating Common HDFS Commands
	2.3.2 Task 2: Using the Recycle Bin

	2.4 Summary

	3 Hive Data Warehouse Practice
	3.1 Background
	3.2 Objectives
	3.3 Tasks
	3.3.1 Task 1: Creating Hive Tables
	3.3.1.1 Viewing Statements for Creating Tables
	3.3.1.2 Creating Database Tables
	3.3.1.3 Creating Foreign Tables
	3.3.1.4 Loading HDFS Data

	3.3.2 Task 3: Performing Basic Hive Queries
	3.3.2.1 Fuzzy Queries
	3.3.2.2 Simple Queries
	3.3.2.3 Complex Queries

	3.3.3 Task 3: Performing Hive Join Operations
	3.3.4 Task 4: Using Hue to Execute HQL

	3.4 Summary

	4 HBase Columnar Database Practice
	4.1 Background
	4.2 Objectives
	4.3 Tasks
	4.3.1 Task 1: Performing Common HBase Operations
	4.3.1.1 Creating Common Tables
	4.3.1.2 Adding Data
	4.3.1.3 Querying Data in Scan Mode
	4.3.1.4 Querying Data in Get Mode
	4.3.1.5 Querying Data by Specified Criteria
	4.3.1.6 Querying Multiversion Data
	4.3.1.7 Deleting Data
	4.3.1.8 Deleting Tables

	4.3.2 Task 2: Pre-splitting Regions During Table Creation
	4.3.2.1 Splitting into Four Regions Randomly by Row Key
	4.3.2.2 Viewing the Start Key and End Key of Specified Regions

	4.3.3 Task 3: Using Filters

	4.4 Summary

	5 MapReduce Data Processing Practice
	5.1 Background
	5.2 Objectives
	5.3 Tasks
	5.3.1 Task 1: MapReduce Shell Practice
	5.3.1 (Optional) Task 2: MapReduce Java Practice: Collecting Statistics on Online Duration

	5.4 Summary

	6 Spark Memory Computing Practice
	6.1 Background
	6.2 Objectives
	6.3 Tasks
	6.3.1 Task 1: Spark RDD Programming
	6.3.2 Task 2: RDD Shell Operations
	6.3.3 (Optional) Task 3: RDD Code Programming — Java Programming
	6.3.4 Task 4: Spark SQL DataFrame Programming
	6.3.5 Task 5: Spark SQL DataSet Programming

	6.4 Summary

	7 Flink Real-Time Processing System Practice
	7.1 Background
	7.2 Objectives
	7.3 Tasks
	7.3.1 Task 1: Importing a Flink Sample Project
	7.3.2 Task 2: Exercising the Asynchronous CheckPoint Mechanism
	7.3.2.1 Data Planning
	7.3.2.2 Exercise Process
	7.3.2.3 Procedure

	7.3.3 Task 3: Obtaining Top N Hot-Selling Offerings in Flink in Real Time
	7.3.3.1 Tasks
	7.3.3.2 Exercise Process
	7.3.3.3 Procedure
	Table 7-1

	7.4 Summary

	8 Kafka Message Subscription Practice
	8.1 Background
	8.2 Objectives
	8.3 Tasks
	8.3.1 Task 1: Producing and Consuming Kafka Messages on the Shell Side
	8.3.2 Task 2: Using Kafka Consumer Groups

	8.4 Summary

	9 Flume Data Collection Practice
	9.1 Background
	9.2 Objectives
	9.3 Tasks
	9.3.1 Task 1: Installing the Flume Client
	9.3.2 Task 2: Using SpoolDir to Collect and Upload Data to HDFS
	9.3.3 Task 3: Using SpoolDir to Collect and Upload Data to Kafka

	9.4 Summary

	10 Loader Data Import and Export Practice
	10.1 Background
	10.2 Objectives
	10.3 Tasks
	10.3.1 Task 1: Preparing MySQL Data
	10.3.2 Task 2: Configuring the MySQL Driver of Loader
	10.3.3 Task 3: Creating a Loader Link
	10.3.4 Task 4: Importing MySQL Data to HDFS
	10.3.5 Task 5: Importing MySQL Data to Hive
	10.3.6 Task 6: Importing HDFS Data to HBase

	10.4 Summary

	11 Comprehensive Exercise: Hive Data Warehouse
	11.1 Background
	11.2 Objectives
	11.3 Tasks
	11.3.1 Preparing MySQL Data
	11.3.2 Importing MySQL Data to Hive
	11.3.3 Processing Hive Data
	11.3.4 Importing HDFS Data to HBase
	11.3.5 Querying Data in HBase in Real Time

	11.4 Summary

	12 Appendix: Environment Preparations and Commands
	12.1 (Optional) Preparing the Java Environment
	12.1.1 Installing JDK
	12.1.2 Installing Apache Maven
	12.1.3 Installing Eclipse
	12.1.4 Importing an MRS 2.0 Sample Project to Eclipse

	12.2 Binding an EIP to an ECS
	12.3 Viewing the IP address of ZooKeeper
	12.4 Viewing the IP Address of a Kafka Broker Instance
	12.5 Common Linux Commands
	12.6 HDFS Commands
	12.7 Yarn Application Operation Commands

