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Huawei Certificate System 
Huawei's certification system is the industry's only one that covers all ICT technical 

fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT 
technical architecture featuring cloud-pipe-device synergy. It provides three types of 
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT 
Vertical Certification. 

To meet ICT professionals' progressive requirements, Huawei offers three levels of 
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional 
(HCIP), and Huawei Certified ICT Expert (HCIE). 

HCIP-AI-EI Developer V2.0 certification is intended to cultivate professionals who 
have acquired basic theoretical knowledge about image processing, speech processing, 
and natural language processing and who are able to conduct development and 
innovation using Huawei enterprise AI solutions (such as HUAWEI CLOUD EI), general 
open-source frameworks, and ModelArts, a one-stop development platform for AI 
developers. 

The content of HCIP-AI-EI Developer V2.0 certification includes but is not limited to: 
neural network basics, image processing theory and applications, speech processing 
theory and applications, natural language processing theory and applications, 
ModelArts overview, and image processing, speech processing, natural language 
processing, and ModelArts platform development experiments. ModelArts is a one-stop 
development platform for AI developers. With data preprocessing, semi-automatic data 
labeling, large-scale distributed training, automatic modeling, and on-demand model 
deployment on devices, edges, and clouds, ModelArts helps AI developers build models 
quickly and manage the lifecycle of AI development. Compared with V1.0, HCIP-AI-EI 
Developer V2.0 adds the ModelArts overview and development experiments. In 
addition, some new EI cloud services are updated. 

HCIP-AI-EI Developer V2.0 certification proves that you have systematically 
understood and mastered neural network basics, image processing theory and 
applications, speech processing theory and applications, ModelArts overview, natural 
language processing theory and applications, image processing application 
development, speech processing application development, natural language processing 
application development, and ModelArts platform development. With this certification, 
you will acquire (1) the knowledge and skills for AI pre-sales technical support, AI 
after-sales technical support, AI product sales, and AI project management; (2) the 
ability to serve as an image processing developer, speech processing developer, or 
natural language processing developer. 
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About This Document 

Overview 

This document is a training course for HCIP-AI certification. It is prepared for trainees who 
are going to take the HCIP-AI exam or readers who want to understand basic AI knowledge. 
By mastering the content of this manual, you will be able to preprocess images and develop 
image tagging, text recognition, and image content moderation using HUAWEI CLOUD 
SERVICES. In the experiment of image preprocessing, we mainly use OpenCV library, while 
in the lab of image tagging, you can submit RESTful requests to invoke related services of 
HUAWEI CLOUD. Huawei Enterprise Cloud EI provides various APIs for image processing 
applications. 

Description 
This lab guide consists of three experiments, including image preprocessing lab based on 
OpenCV library, Smart Album based on HUAWEI CLOUD EI image tag tasks services. These 
labs aim to improve the practical capability processing image when using AI. 
 Experiment 1: Image data preprocessing. 
 Experiment 2: Using HUAWEI CLOUD EI image tagging services to implement smart 

albums. 

Background Knowledge Required 
This course is a Huawei certification development course. To better master the contents of 
this course, readers of this course must meet the following requirements: 
 Basic programming capability 
 Be familiar of data structure 

 

Experiment Environment Overview 
 Python3.6, OpenCV, numpy, matplotlib, pillow 
 HUAWEI CLOUD modelarts (recommended) 
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1 Image Data Preprocessing 

1.1 Introduction 
The main purpose of image preprocessing is to eliminate irrelevant information in images, 
restore useful information, enhance information detectability, and simplify data to the 
maximum extent, thus improving the reliability of feature extraction and image 
segmentation, matching, and recognition. 

In this experiment, the OpenCV image processing library is used to implement basic image 
preprocessing operations, including color space conversion, coordinate transformation, 
grayscale transformation, histogram transformation, and image filtering.  

1.2 Objective 
In this experiment, the image preprocessing technology introduced in the theoretical 
textbook is implemented by the OpenCV image processing library of Python. This exercise 
will help you learn how to use OpenCV to preprocess images. This experiment helps 
trainees understand and master the methods and skills of using Python to develop image 
preprocessing technologies. 

1.3 Lab Environment Description 
In this experiment, you are advised to install the Python environment of a version later 
than 3.6 and install external libraries OpenCV, numpy, and maplotlib. 

1.4 Procedure 

1.4.1 Basic Operations 
Note: All images read in the code in Lab 1.4 can be read from the local images of the 
trainees. 

Step 1 Define the matshow function to facilitate picture display. 

import matplotlib.pyplot as plt 
import numpy as np 
import cv2 
%matplotlib inline 
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# use matplotlib to show opencv pic 
def matshow(title='image',image=None,gray=False): 
 
    if isinstance(image,np.ndarray): 
        if len(image.shape) ==2: 
            pass 
        elif gray == True: 
            # transfer color space to gray in opencv 
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
        else: 
            # transfer color space to RGB in opencv 
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 
    plt.figure() 
    plt.imshow(image,cmap='gray') 
     
    plt.axis('off') # close axis 不显示坐标轴 
    plt.title(title) # title 
    plt.show() 

Step 2 Image reading and display 

import cv2 
# read one image 
# the secend parameter show the way to read, 1 means read as a color image, 0 means gray 
im = cv2.imread(r"lena.png",1) 
matshow("test",im) 
 

Output: 
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Figure 1-1 Lena Image 1 

Step 3 Display data types and image sizes 

# Print the data structure type of the image data. 
print(type(im)) 
# Size of the printed image. 
print(im.shape) 

Output: 

<class'numpy.ndarray'> 

(512, 512, 3) 

Step 4 Image storage 

# Save the image to the specified path. 
cv2.imwrite('lena.jpg', im) 

Output: 

True 

1.4.2 color space conversion 
Step 1 color image graying 

import cv2 
im = cv2.imread(r"lena.jpg") 
matshow("BGR", im) 
# Use cvtColor to change the color space. cv2. COLOR_BGR2GRAY indicates BGR to gray. 
img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 
matshow("Gray", img_gray) 

Output: 
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Figure 1-2 Original lena image 

 
Figure 1-3 Gray scale lena image 

Step 2 Replace the three-channel sequential BGR with the RGB. 

import cv2 
im = cv2.imread(r"lena.jpg") 
matshow("BGR", im) 
# Use cvtColor to change the color space. cv2. COLOR_BGR2RGB indicates BGR to RGB. 
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im_rgb = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) 
# When the image data is in three channels, the imshow function considers that the data is BGR. 
# Run the imshow command to display RGB data. It is found that the image color is distorted. 
matshow("RGB", im_rgb) 

Output: 

 
Figure 1-4 Original lena image 

 
Figure 1-5 Displaying the RGB lena image using the BGR channel 

 

Step 3 BGR and HSV color space conversion 

import cv2 
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im = cv2.imread(r"lena.jpg") 
matshow("BGR", im) 
# Use cvtColor to change the color space. cv2. COLOR_BGR2HSV indicates BGR to HSV. 
im_hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) 
# When the image data is in three channels, the imshow function considers that the data is BGR. 
# Run the imshow command to display HSV data. The HSV component is forcibly displayed as the 
BGR. 
matshow("HSV", im_hsv) 

Output: 

 
Figure 1-6 Original lena image 
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Figure 1-7 Displaying the HSV lena image using the BGR channel 

1.4.3 coordinate Transformation 
Step 1 translation 

import numpy as np 
import cv2 
# Define the translate function. 
def translate(img, x, y): 
    # Obtain the image size. 
    (h, w) = img.shape[:2] 
     
    # Define the translation matrix. 
    M = np.float32([[1, 0, x], [0, 1, y]]) 
     
    # Use the OpenCV affine transformation function to implement the translation operation. 
    shifted = cv2.warpAffine(img, M, (w, h)) 
 
    # Return the shifted image. 
    return shifted 
 
# Load and display the image. 
im = cv2.imread('lena.jpg') 
matshow("Orig", im) 
 
# Translate the original image. 
# 50 pixels down.  
shifted = translate(im, 0, 50) 
matshow("Shift1", shifted) 
# 100 pixels left.  
shifted = translate(im, -100, 0) 
matshow("Shift2", shifted) 
# 50 pixels right and 100 pixels down.  
shifted = translate(im, 50, 100) 
matshow("Shift3", shifted) 

Output: 
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Figure 1-8 Original lena image 

 
Figure 1-9 Move down a 50-pixel lena image 
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Figure 1-10 Move the 100-pixel lena image to the left. 

 

 
Figure 1-11 Moves the image right by 50 pixels and moves down by 100 

pixels. 

 

Step 2 rotation 
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import numpy as np 
import cv2 
 
# Define the rotate function. 
def rotate(img, angle, center=None, scale=1.0): 
    # Obtain the image size. 
    (h, w) = img.shape[:2] 
 
    # The missing value of the rotation center is the image center.  
    if center is None: 
        center = (w / 2, h / 2) 
 
    # Invoke the function of calculating the rotation matrix. 
    M = cv2.getRotationMatrix2D(center, angle, scale) 
     
    # Use the OpenCV affine transformation function to implement the rotation operation. 
    rotated = cv2.warpAffine(img, M, (w, h)) 
 
    # Return the rotated image. 
    return rotated 
 
 
im = cv2.imread('lena.jpg') 
matshow("Orig", im) 
 
# Rotate the original image. 
# 45 degrees counterclockwise.  
rotated = rotate(im, 45) 
matshow("Rotate1", rotated) 
# 20 degrees clockwise.  
rotated = rotate(im, -20) 
matshow("Rotate2", rotated) 
# 90 degrees counterclockwise.  
rotated = rotate(im, 90) 
matshow("Rotate3", rotated) 

Output: 
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Figure 1-12 Original lena image 

 

 
Figure 1-13 45 degrees counterclockwise lena image 
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Figure 1-14 20 degrees clockwise lena image 

 

 
Figure 1-15 90 degrees counterclockwise lena image 

 

Step 3 Mirroring 

import numpy as np 
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import cv2 
 
im = cv2.imread('lena.jpg') 
matshow("orig", im) 
 
# Perform vertical mirroring. 
im_flip0 = cv2.flip(im, 0) 
matshow("flip vertical", im_flip0) 
 
im_flip1 = cv2.flip(im, 1) 
# Perform horizontal mirroring. 
matshow("flip horizontal", im_flip1) 

Output: 

 
Figure 1-16 Original lena image 
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Figure 1-17 Vertical mirror lena image 

 

 
Figure 1-18 Horizontal mirror lena image 

 

Step 4 Zoom 

import numpy as np 
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import cv2 
 
im = cv2.imread('lena.jpg') 
matshow("orig", im) 
 
# Obtain the image size. 
(h, w) = im.shape[:2] 
 
# Target size for scaling. 
dst_size = (200, 300) 
 
# Nearest interpolation 
method = cv2.INTER_NEAREST 
 
# Perform scaling. 
resized = cv2.resize(im, dst_size, interpolation = method) 
matshow("resized1", resized) 
 
# Target size for scaling. 
dst_size = (800, 600) 
 
# Bilinear interpolation 
method = cv2.INTER_LINEAR 
 
# Perform scaling. 
resized = cv2.resize(im, dst_size, interpolation = method) 
matshow("resized2", resized) 

Output: 
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Figure 1-19 Original lena image 

 
Figure 1-20 nearest interpolation scaling lena image 

 
Figure 1-21 Bilinear interpolation scaling lena image 

1.4.4 grayscale Transformation 
Step 1 Grayscale Transformation. inversion, grayscale stretch, grayscale compression 
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# Define the linear grayscale transformation function. 
# k > 1: Stretch the grayscale value.  
# 0 < k < 1: Compress the grayscale value.  
# k = -1, b = 255: Perform grayscale inversion. 
def linear_trans(img, k, b=0): 
    # Calculate the mapping table of linear grayscale changes. 
    trans_list = [(np.float32(x)*k+b) for x in range(256)] 
    # Convert the list to np.array. 
    trans_table =np.array(trans_list) 
    # Adjust the value out of the range [0,255] and set the data type to uint8.  
    trans_table[trans_table>255] = 255 
    trans_table[trans_table<0] = 0 
    trans_table = np.round(trans_table).astype(np.uint8) 
    # Use the look up table function in the OpenCV to change the image grayscale value.  
    return cv2.LUT(img, trans_table) 
 
im = cv2.imread('lena.jpg',0) 
matshow('org', im) 
 
# Inversion. 
im_inversion = linear_trans(im, -1, 255) 
matshow('inversion', im_inversion) 
# Grayscale stretch.  
im_stretch = linear_trans(im, 1.2) 
matshow('graystretch', im_stretch) 
# Grayscale compression. 
im_compress = linear_trans(im, 0.8) 
matshow('graycompress', im_compress) 

Output: 
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Figure 1-22 Original lena grayscale image 

 
Figure 1-23 Flip the lena grayscale image. 
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Figure 1-24 Gray scale stretch lena gray scale chart 

 
Figure 1-25 Gray-scale compression lena grayscale image 

Step 2 gamma transformation 

# Define the gamma transformation function. 
def gamma_trans(img, gamma): 
    # Firstly normalize the input to [0,1], perform the gamma function, and then restore the input to 
[0,255]. 
    gamma_list = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)] 
    # Convert list to np.array and set the data type to uint8. 
    gamma_table = np.round(np.array(gamma_list)).astype(np.uint8) 
    # Use the look up table function of the OpenCV to change the image grayscale value.  
    return cv2.LUT(img, gamma_table) 
 
im = cv2.imread('lena.jpg',0) 
matshow('org', im) 
 
# Use the gamma value 0.5 to stretch the shadow and compress the highlight.  
im_gama05 = gamma_trans(im, 0.5) 
matshow('gama0.5', im_gama05) 
# Use the gamma value 2 to stretch the highlight and compress the shadow.  
im_gama2 = gamma_trans(im, 2) 
matshow('gama2', im_gama2) 

Output: 
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Figure 1-26 Original lena grayscale image 

 
Figure 1-27 Gamma coefficient 0.5 lena grayscale chart 
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Figure 1-28 Grayscale map with the gamma coefficient of 2 lena 

1.4.5 histogram 
Step 1 Histogram display 

from matplotlib import pyplot as plt 
# Read and display the image. 
im = cv2.imread("lena.jpg",0) 
matshow('org', im) 
 
# Draw a histogram for the grayscale image.  
plt.hist(im.ravel(), 256, [0,256]) 
plt.show() 

Output: 
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Figure 1-29 Original lena grayscale image 

 
Figure 1-30 lena gray histogram 

Step 2 histogram equalization 

im = cv2.imread("lena.jpg",0) 
matshow('org', im) 
 
# Invoke the histogram equalization API of the OpenCV. 
im_equ1 = cv2.equalizeHist(im) 
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matshow('equal', im_equ1) 
 
# Display the histogram of the original image. 
plt.subplot(2,1,1) 
plt.hist(im.ravel(), 256, [0,256],label='org') 
plt.legend() 
 
# Display the histogram of the equalized image. 
plt.subplot(2,1,2) 
plt.hist(im_equ1.ravel(), 256, [0,256],label='equalize') 
plt.legend() 
plt.show() 

Output: 
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Figure 1-31 Original lena grayscale image 

 
Figure 1-32 Lena gray scale after histogram equalization 

 
Figure 1-33 Histogram comparison before and after equalization 

1.4.6 filtering 
Step 1 median filtering 
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import cv2 
import numpy as np 
 
im = cv2.imread('lena.jpg') 
matshow('org', im) 
 
# Invoke the median fuzzy API of OpenCV. 
im_medianblur = cv2.medianBlur(im, 5) 
   
matshow('median_blur', im_medianblur) 

Output: 
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Figure 1-34 Original lena image 

 
Figure 1-35 Lena image after median filtering 

Step 2 mean filtering 

# Method 1: Invoke the OpenCV API directly. 
import cv2 
import numpy as np 
 
im = cv2.imread('lena.jpg') 
matshow('org', im) 
 
# Invoke the API for fuzzy average value of OpenCV. 
im_meanblur1 = cv2.blur(im, (3, 3)) 
 
matshow('mean_blur_1', im_meanblur1) 
 
 
 
# Method 2: Use mean operator and filter2D to customize filtering. 
import cv2 
import numpy as np 
 
im = cv2.imread('lena.jpg') 
matshow('org', im) 
# mean operator 
mean_blur = np.ones([3, 3], np.float32)/9 
 
# Use filter2D to perform filtering. 
im_meanblur2 = cv2.filter2D(im, -1, mean_blur) 
matshow('mean_blur_2', im_meanblur2) 
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Output: 

 
Figure 1-36 Original lena image 

 
Figure 1-37 Lena image after OpenCV mean filtering 

 



 

 

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 33 
 

 

 
Figure 1-38 Original lena image 

 
Figure 1-39 Lena image after custom average filtering 

Step 3 Gaussian filtering 

import cv2 
import numpy as np 
 
im = cv2.imread('lena.jpg') 
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matshow('org',im) 
 
# Invoke the Gaussian filtering API of the OpenCV.  
im_gaussianblur1 = cv2.GaussianBlur(im, (5, 5), 0)  
 
matshow('gaussian_blur_1',im_gaussianblur1) 
 
# Method 2: Use the Gaussian operator and filter2D to customize filtering operations. 
import cv2 
import numpy as np 
 
im = cv2.imread('lena.jpg') 
matshow('org',im) 
 
# Gaussian operator 
gaussian_blur = np.array([ 
    [1,4,7,4,1], 
    [4,16,26,16,4], 
    [7,26,41,26,7], 
    [4,16,26,16,4], 
    [1,4,7,4,1]], np.float32)/273 
 
# # Use filter2D to perform filtering. 
im_gaussianblur2 = cv2.filter2D(im,-1,gaussian_blur) 
matshow('gaussian_blur_2',im_gaussianblur2) 

Output: 

 



 

 

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 35 
 

 

Figure 1-40 Original lena image 

 
Figure 1-41 Lena image after OpenCV Gaussian filtering is used 
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Figure 1-42 Original lena image 

 
Figure 1-43 Lena image after user-defined Gaussian filtering 

Step 4 sharpening 

im = cv2.imread('lena.jpg') 
matshow('org',im) 
# Sharpening operator 1. 
sharpen_1 = np.array([ 
        [-1,-1,-1], 
        [-1,9,-1], 
        [-1,-1,-1]]) 
# Use filter2D to perform filtering. 
im_sharpen1 = cv2.filter2D(im,-1,sharpen_1) 
matshow('sharpen_1',im_sharpen1) 
 
# Sharpening operator 2. 
sharpen_2 = np.array([ 
        [0,-1,0], 
        [-1,8,-1], 
        [0,1,0]])/4.0 
 
# Use filter2D to perform filtering. 
im_sharpen2 = cv2.filter2D(im,-1,sharpen_2) 
matshow('sharpen_2',im_sharpen2) 

Output: 
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Figure 1-44 Original lena image 
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Figure 1-45 Sharpening lena image 1 

 
Figure 1-46 Sharpening lena image 2 

1.5 Experiment Summary 
This section describes how to use the OpenCV image processing library to preprocess 
images in Python. In this experiment, the OpenCV image processing library is used to 
implement basic image preprocessing operations, including color space conversion, 
coordinate transformation, grayscale transformation, histogram transformation, and 
image filtering. This section can deepen the perception of the image preprocessing 
technology and provide practical operation guidance for using the technology. 
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2 HUAWEI CLOUD EI Image Tag 
Service 

2.1 Introduction to the Experiment 
Image recognition is a technology that uses a computer to process, analyze, and 
understand images to identify objects in different modes. Image recognition is available 
through open application programming interfaces (APIs). You can obtain the prediction 
results by accessing and invoking the APIs in real time. The APIs help you collect key data 
automatically and build an intelligent service system, thereby improving service efficiency.  

Natural images have rich semantic content. An image contains multiple tags. HUAWEI 
CLOUD Image tags services can identify more than 3000 objects and more than 20,000 
scenes and concept tags, making certain applications such as intelligent album 
management, photo search and classification, and scenario-based content or object-based 
ad recommendation more accurate. 

In the information age, people are used to taking photos with their mobile phones. 
However, the information age has also brought about an explosion of information, and if 
not properly organized, people's electronic devices may have thousands of photographs, 
which are difficult to clear up. 

There are a lot of software on the market for making electronic albums, but there are 
some limitations and some are expensive. By combining AI APIs and Python functions 
provided by HUAWEI CLOUD EI, you can customize your desired albums. 

This lab describes how to use the image recognition service of HUAWEI CLOUD to 
implement simple electronic album arrangement. 

2.2 Objective 
This exercise describes how to use image tagging services to tag images. Currently, Huawei 
public cloud provides the RESTful API of image recognition and the SDK based on Python. 
This exercise will guide trainees to understand and master how to use Python to use the 
image tag service to intelligently arrange albums. 
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2.3 Lab APIs 

2.3.1 REST APIs 
HUAWEI CLOUD APIs comply with RESTful API design specifications. Representational 
State Transfer (REST) allocates Uniform Resource Identifiers (URIs) to dispersed resources 
so that the resources can be located. Applications on clients use Uniform Resource Locators 
(URLs) to obtain the resources. 

2.3.2 REST API Request/Response Structure 
A RESTful API request/response consists of the following five parts: 
 Request URL 

The URL format is as follows: https://Endpoint/uri. The parameters in the URL are 
described in URL. 

Table 2-1 URL parameter description  

Parameter Description 

Endpoint 

Web service entrance URL. Obtain this value from Regions and 
Endpoints.  

Endpoint image.cn-north-4.myhuaweicloud.com corresponding to the 
image recognition service is used by all service APIs. 

uri 
Resource path, that is, the API access path. Obtain the value from the 

URI of the API, for example, /v1.0/ais/subscribe. 

 
 Request header 

The request header consists of two parts: HTTP method and optional additional request 
header field (such as the field required by a specified URI and HTTP method). 

Table 2-2 describes the request methods supported by RESTful APIs. 

Table 2-2 Request method description 

Method Description 

GET Requests the server to return specified resources.  

PUT Requests the server to update specified resources.  

POST Requests the server to add resources or perform a special operation. 

DELETE Requests the server to delete specified resources, for example, objects.  

PATCH 
Requests the server to update partial content of a specified resource. 

If a target resource does not exist, PATCH may create a resource. 
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 Request body 

A request body is generally sent in a structured format (for example, JSON or XML), 
corresponding to Content-type in the request header, and is used to transfer content except 
the request header. If a request body contains a parameter in Chinese, the parameter must 
be coded in UTF-8 mode. 
 Response header 

A response header contains two parts: status code and additional response header field.  

Status code, including success codes 2xx and error codes 4xx or 5xx. Additional response 
header field, such as the field required by the response supporting a request (the field in 
the Content-type response header).  
 Response body 

A response body is generally returned in a structured format (for example, JSON or XML), 
and is used to transfer content except the response header. When a service request is 
successfully sent, the service request result is returned. When a service request fails to be 
sent, an error code is returned. Request Initiation Methods 

There are three methods to initiate constructed requests, including:  
 cURL 

cURL is a command line tool, which can be used to perform URL operations and transfer 
information. cURL functions as an HTTP client can send HTTP requests to the server and 
receive responses. cURL is applicable to API debugging.  
 Code 

You can invoke APIs by coding to assemble, send, and process requests.  

Mozilla and Google provide graphical browser plug-ins for REST clients to send and 
process requests.  

2.3.3 Image Tagging API 
Function overview： 

Natural images have rich semantic meanings because one image contains various tags. 
Image tagging can recognize hundreds of scenarios and thousands of objects and their 
properties in natural images, making intelligent album management, image retrieval 
and classification, and scenario- or object-based advertising more intuitive. After the 
image to be processed is uploaded, image tagging will return the tag and confidence 
score.  

URI 

URI format：POST /v1.0/image/tagging 

Request 

Table 2-3 Request parameter description 

Parameter 
Mandatory 
or Optional Type Description 

image Set either String Image data, which is encoded based on Base64.  
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this 
parameter 

or url. 

The size of data encoded based on Base64 
cannot exceed 10 MB. The image resolution of 
the short edges must be greater than or equal 
to 15 pixels, and that of the long edges cannot 

exceed 4096 pixels. The supported image 
formats include JPG, PNG, and BMP.  

url 

Set either 
this 

parameter 
or image. 

String 

URL of the image file. Currently, this URL can 
be accessed by temporarily authorization on 

HUAWEI CLOUD OBS or anonymous and public 
authorization. 

language Optional String 
Language type of the returned tag. The default 
value is zh, which indicates Chinese. ‘en’ can be 

chosen as English. 

limit Optional Integer 
Maximum number of tags that can be 

returned. The default value is -1, indicating that 
all tags are returned.  

threshold Optional Float 

Threshold (0 to 100) of the confidence score. 
The tags whose confidence score is lower than 
the threshold will not be returned. The default 

value is 0.  

 
Response 

Table 2-4 Response parameter description 

Parameter Type Description 

result JSON 

Content of the image tag returned when the invoking 
succeeds. 

The parameter is not included when the API invoking 
fails. 

tags List List of tags. 

confidence Float Confidence score ranging from 0 to 100.  

tag String Tag name. 

error_code String 

Error code returned when the invoking fails. For details, 
see Error Codes.  

The parameter is not included when the API invoking 
succeeds. 

error_msg String 
Error message returned when the API invoking fails.  

The parameter is not included when the API invoking 
succeeds. 

https://support.huaweicloud.com/en-us/api-image/image_03_0010.html
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Returned values 
 Normal 

200 
 Failed 

Table 2-5 Returned Value parameter description 

Returned Value Description 

400 

The request cannot be understood by the server due to 
malformed syntax. A client shall not submit the request 

again unless the request is modified. 

The request parameters are incorrect. 

401 The request requires user authentication. 

403 No permission to perform this operation. 

404 
The request failed because the requested resource could 

not be found on the server.  

500 The server encountered an unexpected fault which 
prevented it from processing the request. 

 

2.4 Procedure 
In this experiment, you need to download the SDK for image recognition from the HUAWEI 
CLOUD service platform and use either of the following two methods to access the SDK. 
One method is to submit a RESTful service request by invoking the underlying APIs 
encapsulated by the SDK based on the AK/SK for identity authentication. The other method 
is to simulate the browser to submit a RESTful request by obtaining the user's token 
information. The procedure is as follows.Procedures: 

2.4.1 Applying for a Service 
Step 1 Open the HUAWEI CLOUD official website. https://www.huaweicloud.com/en-us/ 
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Figure 2-1 HUAWEI CLOUD official website 

Step 2 Log in to the system using a HUAWEI CLOUD account and choose image recognition. 

 
Figure 2-2 Image label under EI 

Step 3 Click Use Now: 
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Figure 2-3 image recognition main window 

Step 4 Select Beijing 4 and enable the corresponding service. In this experiment, you need to 
enable Image Tag. 

 
Figure 2-4 Provisioning a Service 

2.4.2 (Optional) Downloading the image recognition SDK 
In this lab, the SDK is used as a service, which has been integrated in subsequent data sets. 
You can choose whether to use the SDK to set up an environment independently. 

Step 1 Downloading the image recognition SDK Software Package and Documents 

Link: https://developer.huaweicloud.com/en-us/sdk?IMAGE 

 

https://developer.huaweicloud.com/en-us/sdk?IMAGE
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Figure 2-5 HUAWEI CLOUD SDK 

Step 2 Decompress the image_sdk folder in the package to the project folder. 

 
 

Figure 2-6 Move to Project Folder 

2.4.3 Use AK/SK to perform image tag management. (Skip this 
step if you alrealy have ak/sk) 

Obtain the access key (AK) and secret access key (SK). The AK and SK are the keys used to 
access your own account. The AK and SK are required for calling image recognition APIs. 
If you have obtained the AK and SK, skip this step. 

Step 1 Open the HUAWEI CLOUD official website. https://www.huaweicloud.com/en-
us/Log in to the console. 
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Figure 2-7 HUAWEI CLOUD official website 

Step 2 Click My Credential under My Account. 

 
Figure 2-8 consoles 

Step 3 Click Access Key to add an access key. After you perform the steps in, the system 
automatically generates a .csv file. The key is stored in the file. Keep the file secure. 

 
Figure 2-9 AK/SK configuration 

2.4.4 Opening the Jupyter Notebook 
You can use the local environment (python 3.6 or 3.7 are recommended) or HUAWEI 
CLOUD Modelarts Tensorflow 1.8 kernel environment. 

Annotation: tensorflow 1.8 kernel environment is not used to only to make sure the code 
can the code run correctly. 
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2.4.5 Downloading a Dataset 
Dataset andSDKis integrated into a compressed file. The link is as follows: https://huawei-
ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
AI%20EI%20Developer/V2.1/huaweiei_AIphones.zip  

After the download is complete, decompress the package to the related folder. 

2.4.6 Initialize Image Tag Service 
Step 1 Importing Related Libraries 

# import the package from the image recognition package, image tag, and tool package. 
from image_sdk.utils import encode_to_base64 
from image_sdk.image_tagging import image_tagging_aksk 
from image_sdk.utils import init_global_env 
 
# Invoke JSON to parse the returned result. 
import json 
# Packages of operating system files or folders 
import os 
import shutil 
# Packages related to image processing and display 
 
from PIL import Image 
import numpy as np 
import matplotlib.pyplot as plt 

Step 2 Set related parameters. 

init_global_env('cn-north-4') 
 
# Prepare AK and SK. 
app_key = '*** Change it to your own ak***' 
app_secret = '*** Change it to your own sk***' 

Step 3 Using network image to test 

# Use the network image test. 
demo_data_url = 'https://sdk-obs-source-save.obs.cn-north-4.myhuaweicloud.com/tagging-normal.jpg' 
# call interface use the url 
result = image_tagging_aksk(app_key, app_secret, '', demo_data_url, 'en', 5, 30) 
 
# Convert the value to a Python dictionary. 
tags = json.loads(result) 
print(tags) 

Output: 

{'result': {'tags': [{'confidence': '98.38', 'i18n_tag': {'en': 'Person', 'zh': '人'}, 'tag': 'Person', 
'type': 'object'}, {'confidence': '97.12', 'i18n_tag': {'en': 'Children', 'zh': '儿童'}, 'tag': 'Children', 
'type': 'object'}, {'confidence': '96.39', 'i18n_tag': {'en': 'Sandbox', 'zh': '(供儿童玩的)沙坑'}, 
'tag': 'Sandbox', 'type': 'scene'}, {'confidence': '89.28', 'i18n_tag': {'en': 'Play', 'zh': '玩耍'}, 'tag': 
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'Play', 'type': 'object'}, {'confidence': '87.99', 'i18n_tag': {'en': 'Toy', 'zh': '玩具'}, 'tag': 'Toy', 
'type': 'object'}]}} 

2.4.7 Labeling related photos 
Step 1 Mark a photo 

# Determine the location of the electronic album. 
file_path ='data/' 
file_name = 'pic3.jpg' 
 
# Save the image label dictionary. 
labels={} 
 
# Image marking 
result = image_tagging_aksk(app_key, app_secret, encode_to_base64(file_path + file_name), '','en', 5, 
60) 
# Parse result. 
result_dic = json.loads(result) 
# Save the data to the dictionary. 
labels[file_name] = result_dic['result']['tags'] 
print(labels) 

Output: 

{'pic3.jpg': [{'confidence': '95.41', 'i18n_tag': {'en': 'Lion', 'zh': '狮子'}, 'tag': 'Lion', 'type': 
'object'}, {'confidence': '91.03', 'i18n_tag': {'en': 'Carnivora', 'zh': '食肉目'}, 'tag': 'Carnivora', 
'type': 'object'}, {'confidence': '87.23', 'i18n_tag': {'en': 'Cat', 'zh': '猫'}, 'tag': 'Cat', 'type': 
'object'}, {'confidence': '86.97', 'i18n_tag': {'en': 'Animal', 'zh': '动物'}, 'tag': 'Animal', 'type': 
'object'}, {'confidence': '74.84', 'i18n_tag': {'en': 'Hairy', 'zh': '毛茸茸'}, 'tag': 'Hairy', 'type': 
'object'}]} 

Step 2 Mark all photos in the data folder. 

# Determine the location of the electronic album. 
file_path ='data/' 
# Save the image label dictionary. 
labels = {} 
 
items = os.listdir(file_path) 
for i in items: 
    # Check whether the file is a file, not a folder. 
    if os.path.isfile: 
        # HUAWEI CLOUD EI supports images in JPG, PNG, and BMP formats. 
        if i.endswith('jpg') or i.endswith('jpeg') or i.endswith('bmp') or i.endswith('png'): 
            # Label images. 
            result = image_tagging_aksk(app_key, app_secret, encode_to_base64(file_path + i), 
'','en', 5, 60) 
            # Parse the returned result. 
            result_dic = json.loads(result) 
            # Align the file name with the image. 
            labels[i] = result_dic['result']['tags'] 
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# Display the result. 
print(labels) 

Output: 

{'pic1.jpg': [{'confidence': '89.73', 'i18n_tag': {'en': 'Running', 'zh': '奔跑'}, 'tag': 'Running', 
'type': 'object'}, {'confidence': '88.34', 'i18n_tag': {'en': 'Person', 'zh': '人'}, 'tag': 'Person', 'type': 
'object'}, {'confidence': '87.59', 'i18n_tag': {'en': 'Motion', 'zh': '运动'}, 'tag': 'Motion', 'type': 
'object'}, {'confidence': '87.24', 'i18n_tag': {'en': 'Sunrise', 'zh': '日出'}, 'tag': 'Sunrise', 'type': 
'object'}, {'confidence': '86.68', 'i18n_tag': {'en': 'Outdoors', 'zh': '户外'}, 'tag': 'Outdoors', 
'type': 'object'}], 'pic10.jpg': [{'confidence': '85.83', 'i18n_tag': {'en': 'Flower', 'zh': '花朵'}, 'tag': 
'Flower', 'type': 'object'}, {'confidence': '84.33', 'i18n_tag': {'en': 'Plant', 'zh': '植物'}, 'tag': 
'Plant', 'type': 'object'}, {'confidence': '83.47', 'i18n_tag': {'en': 'Red', 'zh': '红色'}, 'tag': 'Red', 
'type': 'object'}, {'confidence': '79.92', 'i18n_tag': {'en': 'Flower', 'zh': '花'}, 'tag': 'Flower', 'type': 
'object'}, {'confidence': '78.67', 'i18n_tag': {'en': 'Flowers and plants', 'zh': '花卉 '}, 'tag': 
'Flowers and plants', 'type': 'object'}], 'pic2.jpg': [{'confidence': '99.61', 'i18n_tag': {'en': 'Cat', 
'zh': '猫'}, 'tag': 'Cat', 'type': 'object'}, {'confidence': '99.22', 'i18n_tag': {'en': 'Carnivora', 'zh': 
'食肉目'}, 'tag': 'Carnivora', 'type': 'object'}, {'confidence': '88.96', 'i18n_tag': {'en': 'Field road', 
'zh': '田野路 '}, 'tag': 'Field road', 'type': 'scene'}, {'confidence': '86.12', 'i18n_tag': {'en': 
'Animal', 'zh': '动物'}, 'tag': 'Animal', 'type': 'object'}, {'confidence': '83.33', 'i18n_tag': {'en': 
'Mammal', 'zh': '哺乳动物 '}, 'tag': 'Mammal', 'type': 'object'}], 'pic3.jpg': [{'confidence': 
'95.41', 'i18n_tag': {'en': 'Lion', 'zh': '狮子'}, 'tag': 'Lion', 'type': 'object'}, {'confidence': '91.03', 
'i18n_tag': {'en': 'Carnivora', 'zh': '食肉目'}, 'tag': 'Carnivora', 'type': 'object'}, {'confidence': 
'87.23', 'i18n_tag': {'en': 'Cat', 'zh': '猫'}, 'tag': 'Cat', 'type': 'object'}, {'confidence': '86.97', 
'i18n_tag': {'en': 'Animal', 'zh': '动物'}, 'tag': 'Animal', 'type': 'object'}, {'confidence': '74.84', 
'i18n_tag': {'en': 'Hairy', 'zh': '毛茸茸'}, 'tag': 'Hairy', 'type': 'object'}], 'pic4.jpg': [{'confidence': 
'92.35', 'i18n_tag': {'en': 'Retro', 'zh': '复古 '}, 'tag': 'Retro', 'type': 'object'}, {'confidence': 
'91.39', 'i18n_tag': {'en': 'Design', 'zh': '设计'}, 'tag': 'Design', 'type': 'object'}, {'confidence': 
'86.89', 'i18n_tag': {'en': 'Home furnishing', 'zh': '家居 '}, 'tag': 'Home furnishing', 'type': 
'object'}, {'confidence': '86.43', 'i18n_tag': {'en': 'Bow window indoor', 'zh': '弓形窗/室内'}... 
(omit) 

Step 3 Save the marking result. 

# Save the label dictionary to a file. 
save_path = './label' 
# If the folder does not exist, create a file. 
if not os.path.exists(save_path): 

os.mkdir(save_path) 
 

# Create a file, write the file, and close the file. 
with open(save_path + '/labels.json', 'w+') as f: 

f.write(json.dumps(labels)) 

2.4.8 Making Dynamic Album by Using Marking Results 
Step 1 Reopen the saved labeling result. 
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# Open the saved file. 
label_path = 'label/labels.json' 
with open(label_path, 'r') as f: 

labels = json.load(f) 

Step 2 Use keywords to search (the keyword is Flower). 

# Search keyword 
key_word = input('Please enter a keyword.') 
 
# Set the trusted percentage. 
threshold = 60 
# Set a collection (the collection contains only one element). 
valid_list = set() 
 
# Traverse the dictionary in labels to obtain all image names that contain keywords. 
for k,v in labels.items(): 
    for item in v: 
        if key_word in item['tag'] and float(item['confidence']) >= threshold: 
            valid_list.add(k) 
 
 
             
             
# Display the result. 
valid_list = list(valid_list) 
print(valid_list) 

Output: 

Please enter a keyword. 

['pic10.jpg', 'pic7.jpg', 'pic5.jpg', 'pic9.jpg'] 

Step 3 Display related images. 

# Set the canvas size. 
plt.figure(24) 
 
# Arrange each image on the canvas in sequence. 
for k,v in enumerate(valid_list[:9]): 
    pic_path = 'data/' + v 
    img = Image.open(pic_path) 
    img = img.resize((640, 400)) 
    plt.subplot(331 + k) 
    plt.axis('off') 
    plt.imshow(img) 
     
plt.show() 

Output: 
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Step 4 Creating a GIF Image 

# Generate a temporary folder. 
if not os.path.exists('tmp'): 
    os.mkdir('tmp') 
 
# Convert all searched images into GIF format and store them in a temporary folder. 
gif_list = [] 
for k, pic in enumerate(valid_list): 
    pic_path = 'data/' + pic 
    img = Image.open(pic_path) 
    img = img.resize((640, 380)) 
    save_name = 'tmp/'+ str(k) + '.gif' 
    img.save(save_name) 
    gif_list.append(save_name) 
 
# Open all static GIF images. 
images=[] 
for i in gif_list: 
    pic_path = i 
    images.append(Image.open(pic_path)) 
 
# Save the GIF image. 
images[0].save('Album Animation.gif', 
                save_all=True, 
                append_images=images[1:], 
                duration=1000, 
                loop=0) 
 
# Release the memory. 
del images 
# Delete the temporary folder. 
shutil.rmtree('tmp') 
 
print('GIF album created.') 

Output: 

GIF album created. 
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2.4.9 Automatically classify photos with labels 
Step 1 Automatic classification 

# Open the saved labels file. 
label_path = 'label/labels.json' 
with open(label_path, 'r') as f: 
    labels = json.load(f) 
 
# Obtain the file category with the highest confidence. 
classes =[[v[0]['tag'] ,k] for k, v in labels.items()] 
 
for cls in classes: 
    if not os.path.exists('data/' + cls[0]): 
        os.mkdir('data/'+ cls[0]) 
    # Copy the corresponding image. 
    shutil.copy('data/'+ cls[1], 'data/'+ cls[0]+ '/'+ cls[1]) 
 
print('Copying completed.') 

Output: 

Copying completed 

2.5 Experiment Summary 
This experiment describes how to use Image Tag service to perform operations related to 
electronic albums. First, this experiment describes how to enable services under image 
recognition. Second the experiment focuses on how to use Image Tag to label photos, 
search for albums, and create dynamic albums, automatically classify photos and display 
related results. In addition, we have practiced and performed basic operations on the image 
recognition libraries of HUAWEI CLOUD EI service. 
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Huawei Certificate System 
Huawei's certification system is the industry's only one that covers all ICT technical 

fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT 
technical architecture featuring cloud-pipe-device synergy. It provides three types of 
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT 
Vertical Certification. 

To meet ICT professionals' progressive requirements, Huawei offers three levels of 
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional 
(HCIP), and Huawei Certified ICT Expert (HCIE). 

HCIP-AI-EI Developer V2.0 certification is intended to cultivate professionals who 
have acquired basic theoretical knowledge about image processing, speech processing, 
and natural language processing and who are able to conduct development and 
innovation using Huawei enterprise AI solutions (such as HUAWEI CLOUD EI), general 
open-source frameworks, and ModelArts, a one-stop development platform for AI 
developers. 

The content of HCIP-AI-EI Developer V2.0 certification includes but is not limited to: 
neural network basics, image processing theory and applications, speech processing 
theory and applications, natural language processing theory and applications, 
ModelArts overview, and image processing, speech processing, natural language 
processing, and ModelArts platform development experiments. ModelArts is a one-stop 
development platform for AI developers. With data preprocessing, semi-automatic data 
labeling, large-scale distributed training, automatic modeling, and on-demand model 
deployment on devices, edges, and clouds, ModelArts helps AI developers build models 
quickly and manage the lifecycle of AI development. Compared with V1.0, HCIP-AI-EI 
Developer V2.0 adds the ModelArts overview and development experiments. In 
addition, some new EI cloud services are updated. 

HCIP-AI-EI Developer V2.0 certification proves that you have systematically 
understood and mastered neural network basics, image processing theory and 
applications, speech processing theory and applications, ModelArts overview, natural 
language processing theory and applications, image processing application 
development, speech processing application development, natural language processing 
application development, and ModelArts platform development. With this certification, 
you will acquire (1) the knowledge and skills for AI pre-sales technical support, AI 
after-sales technical support, AI product sales, and AI project management; (2) the 
ability to serve as an image processing developer, speech processing developer, or 
natural language processing developer. 
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About This Document 

Overview 

This document is an HCIP-AI certification training course. It is intended for trainees who 
are preparing for HCIP-AI tests or readers who want to know about AI basics. After 
understanding this document, you will be able to perform speech processing, for example, 
speech file pre-processing, speech input, text to speech (TTS), and automatic speech 
recognition (ASR), and carry out development. To implement the ASR operations, we use 
the TensorFlow framework to construct the deep neural network, such as Seq2Seq model. 

Description 
This document contains three experiments and it involves speech file pre-processing, 
Huawei-based TTS and ASR. It aims to improve the practical development capability of AI 
speech processing. 

 Experiment 1: helps understand Python-based speech file pre-processing. 

 Experiment 2: helps understand how to implement TTS through HUAWEI CLOUD EI.  

 Experiment 3 helps understand Tensorflow-based ASR. 

Background Knowledge Required 
 Have basic Python language programming skills. 

 Have basic knowledge in speech processing. 

 Have basic knowledge in TensorFlow and Keras. 

 Have basic knowledge in deep neural network. 

Experiment Environment Overview 
 Windows (64-bit) 

 Anaconda3 (64-bit) (Python 3.6.4 or later) 

 Jupyter Notebook 

 Link for downloading the experiment data: 

https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
AI%20EI%20Developer/V2.1/speech.rar 

 Speech Pre-processing. 

 TTS based on HUAWEI CLOUD EI. 

 ASR based on Seq2Seq 

https://data-certification.obs.cn-east-2.myhuaweicloud.com/ENG/HCIP-AI%20EI%20Developer/V2.1/speech.rar
https://data-certification.obs.cn-east-2.myhuaweicloud.com/ENG/HCIP-AI%20EI%20Developer/V2.1/speech.rar
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1 Speech Preprocessing 

1.1 Introduction 

1.1.1 About this lab 
Speech is a non-stationary time-varying signal. It carries various information. Information 
including in speech needs to be extracted for speech processing, for example, speech 
encoding, TTS, speech recognition, and speech quality enhancement. Generally, speech 
data is processed to analyze speech signals and extract characteristic parameters for 
subsequent processing or to process speech signals. For example, background noise is 
suppressed in speech quality enhancement to obtain relatively "clean" speech. In TTS, 
splicing and smoothing need to be performed for speech segments to obtain synthetic 
speech with higher subjective speech quality. Applications in this aspect are also created 
on the basis of analysis and extraction of speech signal information. In a word, the purpose 
of speech signal analysis is to conveniently and effectively extract and express information 
carried in speech signals. 

Based on types of analyzed parameters, speech signal analysis can be divided into time-
domain analysis and transform-domain (frequency domain and cepstral domain) analysis. 
The time-domain analysis method is the simplest and the most intuitive method. It directly 
analyzes time-domain waveforms of speech signals and extracts characteristic parameters, 
including short-time energy and average amplitude of speech, average short-time zero-
crossing rate, short-time autocorrelation function, and short-time average amplitude 
difference function. 

This experiment provides analysis based on speech data attributes of the short-sequence 
speech data set and related characteristic attributes to have a more in-depth and 
comprehensive understanding of speech data. 

1.1.2 Objectives 
Upon completion of this task, you will be able to: 

 Check the attributes of speech data. 

 Understand the features of speech data. 

1.1.3 Knowledge Required 
This experiment requires knowledge in two aspects: 

 Syntactical basis of the Python language and hands-on operation capability. 

 Understanding of the related wave framework. 
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1.2 Installing Related Modules 
Install the Python module. 

Click Start in the lower left corner of the Windows OS. A menu list is displayed. 

 

 
Figure 1-1 Anaconda Prompt 

Click Anaconda Prompt. The Anaconda system is displayed. 
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Figure 1-2 Anaconda Prompt 

Install the wave module. Enter pip install wave. The result is as follows: 

 
Figure 1-3 Install wave 

Install other required Python frameworks by following the similar steps. 

1.3 Procedure 
This experiment is performed based on the wave framework. Main steps include: 

 View audio data attributes. 

 View audio data conversion matrix 

 View the audio spectrum. 

 View the audio waveform. 

Step 1 Import related modules 

Code: 
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import wave as we 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy.io import wavfile 
import matplotlib.pyplot as plt 
from matplotlib.backend_bases import RendererBase 
from scipy import signal 
from scipy.io import wavfile 
import os 
from scipy.fftpack import fft 
import warnings 
warnings.filterwarnings("ignore") 

Step 2 View basic attributes of the wav file 

Code: 

filename = 'data/thchs30/train/A2_0.wav ' 
WAVE = we.open(filename) 
# Output information (sound channel, sampling width, frame rate, number of frames, unique ID, and 
# lossless information) 
for item in enumerate(WAVE.getparams()): 
    print (item) 
a = WAVE.getparams().nframes   # Total number of frames   
print(a) 
f = WAVE.getparams().framerate  # Sampling frequency 
print("Sampling frequency：",f) 
sample_time = 1/f                # Interval of sampling points 
time = a/f                       # Sound signal length 
sample_frequency, audio_sequence = wavfile.read(filename) 
print (audio_sequence,len(audio_sequence ))      
x_seq = np.arange(0,time,sample_time) 
print(x_seq,len(x_seq)) 

Result: 

(0, 1) 
(1, 2) 
(2, 16000) 
(3, 157000) 
(4, 'NONE') 
(5, 'not compressed') 
157000 
Sampling frequency： 16000 
[-296 -424 -392 ... -394 -379 -390] 157000 
[0.0000000e+00 6.2500000e-05 1.2500000e-04 ... 9.8123125e+00 9.8123750e+00 
 9.8124375e+00] 157000 
  

Step 3 View the waveform sequence of the wav file 

Code: 

plt.plot(x_seq,audio_sequence, 'blue' ) 
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plt.xlabel('time (s)') 
plt.show() 

Result:  

 

Figure 1-4 The waveform sequence of the wav file 

Step 4 Obtain file name 

Code: 

audio_path = 'data/train/audio/' 
pict_Path = 'data/train/audio/' 
samples = [] 
# Verify that the file exists, if not here, create it 
if not os.path.exists(pict_Path): 
    os.makedirs(pict_Path) 
     
subFolderList = [] 
for x in os.listdir(audio_path): 
    if os.path.isdir(audio_path + '/' + x): 
        subFolderList.append(x) 
        if not os.path.exists(pict_Path + '/' + x): 
            os.makedirs(pict_Path +'/'+ x) 
# View the name and number of sub-files 
print("----list----:",subFolderList) 
print("----len----:",len(subFolderList)) 

Result: 

----list----: ['bed', 'bird', 'cat', 'dog', 'down', 'eight', 'five', 'four', 'go', 'happy', 'house', 'left', 'marvin', 
'nine', 'no', 'off', 'on', 'one', 'right', 'seven', 'sheila', 'six', 'stop', 'three', 'tree', 'two', 'up', 'wow', 'yes', 
'zero', '_background_noise_'] 
----len----: 31 
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Step 5 Count the number of speech files in each subfolder 

Code： 

sample_audio = [] 
total = 0 
for x in subFolderList: 
    # Get all wav files 
    all_files = [y for y in os.listdir(audio_path + x) if '.wav' in y] 
    total += len(all_files) 
    sample_audio.append(audio_path  + x + '/'+ all_files[0]) 
    # View the number of files in each subfolder 
    print('%s : count: %d ' % (x , len(all_files))) 
# View the total number of wav files 
print("TOTAL:",total) 

Result： 

bed : count: 10  
bird : count: 15  
cat : count: 17  
dog : count: 20  
down : count: 36  
eight : count: 16  
five : count: 16  
four : count: 22  
go : count: 18  
happy : count: 16  
house : count: 15  
left : count: 20  
marvin : count: 19  
nine : count: 14  
no : count: 16  
off : count: 20  
on : count: 11  
one : count: 18  
right : count: 22  
seven : count: 20  
sheila : count: 17  
six : count: 15  
stop : count: 12  
three : count: 19  
tree : count: 14  
two : count: 12  
up : count: 10  
wow : count: 18  
yes : count: 17  
zero : count: 20  
_background_noise_ : count: 6  
TOTAL: 521 

Step 6 View the first file in each sub-folder 

Code： 
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for x in sample_audio: 
print(x) 

Result: 

data/train/audio//bed/00f0204f_nohash_0.wav 
data/train/audio//bird/00b01445_nohash_0.wav 
data/train/audio//cat/00b01445_nohash_0.wav 
data/train/audio//dog/fc2411fe_nohash_0.wav 
data/train/audio//down/fbdc07bb_nohash_0.wav 
data/train/audio//eight/fd395b74_nohash_0.wav 
data/train/audio//five/fd395b74_nohash_2.wav 
data/train/audio//four/fd32732a_nohash_0.wav 
data/train/audio//go/00b01445_nohash_0.wav 
data/train/audio//happy/fbf3dd31_nohash_0.wav 
data/train/audio//house/fcb25a78_nohash_0.wav 
data/train/audio//left/00b01445_nohash_0.wav 
data/train/audio//marvin/fc2411fe_nohash_0.wav 
data/train/audio//nine/00b01445_nohash_0.wav 
data/train/audio//no/fe1916ba_nohash_0.wav 
data/train/audio//off/00b01445_nohash_0.wav 
data/train/audio//on/00b01445_nohash_0.wav 
data/train/audio//one/00f0204f_nohash_0.wav 
data/train/audio//right/00b01445_nohash_0.wav 
data/train/audio//seven/0a0b46ae_nohash_0.wav 
data/train/audio//sheila/00f0204f_nohash_0.wav 
data/train/audio//six/00b01445_nohash_0.wav 
data/train/audio//stop/0ab3b47d_nohash_0.wav 
data/train/audio//three/00b01445_nohash_0.wav 
data/train/audio//tree/00b01445_nohash_0.wav 
data/train/audio//two/00b01445_nohash_0.wav 
data/train/audio//up/00b01445_nohash_0.wav 
data/train/audio//wow/00f0204f_nohash_0.wav 
data/train/audio//yes/00f0204f_nohash_0.wav 
data/train/audio//zero/0ab3b47d_nohash_0.wav 
data/train/audio//_background_noise_/doing_the_dishes.wav 

Step 7 Create a spectrum processing function 

Code: 

def log_specgram(audio, sample_rate, window_size=20, 
                 step_size=10, eps=1e-10): 
    nperseg = int(round(window_size * sample_rate / 1e3)) 
    noverlap = int(round(step_size * sample_rate / 1e3)) 
    freqs, _, spec = signal.spectrogram(audio, 
                                    fs=sample_rate, 
                                    window='hann', 
                                    nperseg=nperseg, 
                                    noverlap=noverlap, 
                                    detrend=False) 
    return freqs, np.log(spec.T.astype(np.float32) + eps) 

Step 8 Visualize one spectrum of multiple samples 
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Code: 

fig = plt.figure(figsize=(20,20)) 
 
for i, filepath in enumerate(sample_audio[:16]): 
    # Make subplots 
    plt.subplot(4,4,i+1) 
  
    # pull the labels 
    label = filepath.split('/')[-2] 
    plt.title(label) 
     
    # create spectrogram 
    samplerate, test_sound  = wavfile.read(filepath) 
    _, spectrogram = log_specgram(test_sound, samplerate) 
     
    plt.imshow(spectrogram.T, aspect='auto', origin='lower') 
    plt.axis('off') 
plt.show() 

Result: 
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Figure 1-5 One spectrum of multiple samples 

Step 9 Visualize multiple spectrums of one sample 

Code: 

yes_samples = [audio_path + 'yes/' + y for y in os.listdir(audio_path + 'yes/')[:9]] 
fig = plt.figure(figsize=(10,10)) 
 
for i, filepath in enumerate(yes_samples): 
    # Make subplots 
    plt.subplot(3,3,i+1) 
     
    # pull the labels 
    label = filepath.split('/')[-1] 
    plt.title('"yes": '+label) 
     
    # create spectrogram 
    samplerate, test_sound  = wavfile.read(filepath) 
    _, spectrogram = log_specgram(test_sound, samplerate) 
     
    plt.imshow(spectrogram.T, aspect='auto', origin='lower') 
    plt.axis('off') 
plt.show() 

Result: 
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Figure 1-6 Multiple spectrums of one sample 

 

Step 10 Visualize the waveforms of multiple samples 

Code: 

fig = plt.figure(figsize=(10,10)) 
for i, filepath in enumerate(sample_audio[:16]): 
    plt.subplot(4,4,i+1) 
    samplerate, test_sound  = wavfile.read(filepath) 
    plt.title(filepath.split('/')[-2]) 
    plt.axis('off') 
    plt.plot(test_sound) 
plt.show() 

Result: 

 
Figure 1-7 The waveforms of multiple samples 

Step 11 Visualize multiple waveforms of one sample 

Code: 

fig = plt.figure(figsize=(8,8)) 
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for i, filepath in enumerate(yes_samples): 
    plt.subplot(3,3,i+1) 
    samplerate, test_sound = wavfile.read(filepath) 
    plt.title(filepath.split('/')[-2]) 
    plt.axis('off') 
    plt.plot(test_sound) 
plt.show() 

Result: 

 
Figure 1-8 Multiple waveforms of one sample 

1.4 Summary 
This experiment is a speech data pre-processing experiment based on the Python language, 
wave speech processing framework, and open source data set. It mainly includes viewing 
of basic speech data and processing of waveform and spectrum files. Visualization and 
display of specific values help trainees view essential attributes of speech data more clearly. 
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2 HUAWEI CLOUD EI Text-to-Speech 
Service 

2.1 Introduction 

2.1.1 About this lab 
In the Speech Interaction Service on Huawei Cloud, there are text to speech and speech 
recognition services. The content of this experiment is a customized version of text to 
speech and a customized version of a single sentence recognition service. 

Text To Speech (TTS), is a service that converts texts into realistic voices. TTS provides users 
with open application programming interfaces (APIs). Users can obtain the TTS result by 
accessing and calling APIs in real time and synthesize the input text into audio. Personalized 
voice services are provided for enterprises and individuals by selecting tone, customizing 
the volume and speed. 

This service can release the Restful HTTP request service of the POST in either of the 
following ways: by calling the underlying interface encapsulated by the SDK to release the 
Restful service, or by simulating the access of the frontend browser. The former requires 
the AK and SK of the user for identity authentication. The latter requires the user token for 
identity authentication. In this lab, AK/SK authentication is used to publish a request service. 

 

2.1.2 Objectives 
Upon completion of this task, you will be able to: 

 Learn how to use HUAWEI CLOUD to perform text to speech and speech recognition. 

 Understand and master how to use Python to develop services. 

2.2 Preparing the Experiment Environment 
 Registering and Logging In to the HUAWEI CLOUD Management Console. 

 For details about the documents related to speech synthesis and speech recognition, 
see https://support.huaweicloud.com/en-us/api-sis/sis_03_0111.html  and 
https://support.huaweicloud.com/en-us/api-sis/sis_03_0040.html.  

 Prepare the AK/SK of the HUAWEI CLOUD account. If you can get it before, you can 
continue to use the previous AK/SK. If you have not obtained AK/SK before, you can 
log in HUAWEI CLOUD, click "My Credentials" in the user name, and select Access 

https://support.huaweicloud.com/en-us/api-sis/sis_03_0111.html
https://support.huaweicloud.com/en-us/api-sis/sis_03_0040.html
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Keys> Create Access Key on the "My Credentials" interface to obtain and download. 
Please keep the AK/SK information properly. You do not need to add any more in 
other experiments, you can use this AK/SK directly. 

 Prepare project_id. If you have obtained it before, you can continue to use the 
previous project ID. If you have not obtained it, you can view the project ID in the 
API Credentials on the "My Credentials" interface, and copy the project ID of the 
region as your project_id. 

 
Figure 2-1 Project ID 

 You need to confirm that the Python environment has been installed, the Python 
SDK is suitable for Python3, and Python 3.6 or 3.7 is recommended. 

2.3 Obtaining and configuring Python SDK 
1. Download the Python SDK for the Speech Interaction service 

(https://mirrors.huaweicloud.com/sis-sdk/python/huaweicloud-python-sdk-sis-
1.0.0.rar ) and decompress it. We can use the data in the data folder. The code can 
be at the same level as the data folder. We can also use our own data and put it in 
the data folder. What is the same level? As shown in the figure below, the files are of 
the same level. 

 
Figure 2-2 The Same Level 

 

https://mirrors.huaweicloud.com/sis-sdk/python/huaweicloud-python-sdk-sis-1.0.0.rar
https://mirrors.huaweicloud.com/sis-sdk/python/huaweicloud-python-sdk-sis-1.0.0.rar
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2. Please confirm that the Python package management tool “setuptools” has been 
installed. Please confirm that requests and websocket-client packages have been 
installed. The installed list can be viewed through the "point list" command. If they are 
not installed, use the following command to install: 

pip install setuptools 
pip install requests 
pip install websocket-client 

3. Use the Anaconda Prompt command to switch to the Python SDK decompression 
directory. 

4. In the SDK directory, execute the command “python setup.py install” to install the 
Python SDK to the development environment, or import the .py file directly into the 
project.  

 

2.4 Procedure 
This experiment needs to download the SDK of the speech interaction service on the 
Huawei public cloud service, and use the AK\SK information for identity authentication to 
call the SDK underlying interface service to submit the Restful service request. This 
experiment uses the SDK to call the TTS services , And run the experiment in Jupyter 
Notebook. Specific steps are as follows: 

2.4.1 TTS 
Customized TTS is a service that converts text into realistic speech. The user obtains TTS 
result by accessing and calling API in real time, and convert the text input by the user into 
speech. Provide personalized pronunciation services for enterprises and individuals through 
tone selection, custom volume, and speech speed. 

Step 1 Import related modules 

Code: 

# -*- coding: utf-8 -*- 
from huaweicloud_sis.client.tts_client import TtsCustomizationClient 
from huaweicloud_sis.bean.tts_request import TtsCustomRequest 
from huaweicloud_sis.bean.sis_config import SisConfig 
from huaweicloud_sis.exception.exceptions import ClientException 
from huaweicloud_sis.exception.exceptions import ServerException 
import json 
 

Step 2 Configure related parameters 

Code: 

ak = "***" #Configure your own ak 
sk = "***" #Configure your own sk 
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project_id = "***" #Configure your own project_id 
region = "cn-north-4" #Beijing-4 is used by default, and the corresponding region code is cn-north-4 

Step 3 Configure data and save path 

Code: 

text ='I like you, do you like me?' # The text to be synthesized, no more than 500 words 
path ='data/test.wav' #configure save path, you can also choose not to save in the settings 
 

Step 4 Initialize the client 

Code: 

config = SisConfig() 
config.set_connect_timeout(5)       # Set connection timeout 
config.set_read_timeout(10)         # Set read timeout  
ttsc_client = TtsCustomizationClient(ak, sk, region, project_id, sis_config=config) 

Step 5 Construct request 

Code： 

ttsc_request = TtsCustomRequest(text) 
# Set request, all parameters can be left unset, use default parameters 
# Set audio format, default wav, optional mp3 and pcm 
ttsc_request.set_audio_format('wav') 
#Set the sampling rate, 8000 or 16000, the default is 8000 
ttsc_request.set_sample_rate('8000') 
# Set the volume, [0, 100], default 50 
ttsc_request.set_volume(50) 
# Set the pitch, [-500, 500], default 0 
ttsc_request.set_pitch(0) 
# Set the speed of sound, [-500, 500], default 0 
ttsc_request.set_speed(0) 
# Set whether to save, the default is False 
ttsc_request.set_saved(True) 
# Set the save path, this parameter will only take effect when the setting is saved 
ttsc_request.set_saved_path(path) 

Step 6 TTS test 

Code： 

# Send a request and return the result. You can view the saved audio in the specified path. 
result = ttsc_client.get_ttsc_response(ttsc_request) 
print(json.dumps(result, indent=2, ensure_ascii=False)) 

 

Result: 

{ 
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  "result": { 
"data": "UklGRuT… 
… 
}, 
  "trace_id": "b9295ebb-1c9c-4d00-b2e9-7d9f3dd63727", 
  "is_saved": true, 
  "saved_path": "data/test.wav" 
} 

trace_id indicates the internal token of the service, which can be used to trace the specific 
process in logs. This field is unavailable when the invocation fails. In some error cases, this 
token string may not be available. result: indicates the recognition result if the invoking is 
successful. This field is unavailable if the invoking fails. data indicates audio data, which is 
returned in Base64 encoding format. 

The saved speech data is as follows: 

 

Figure 2-3 The Saved Speech Data 

2.5 Summary 
This chapter mainly introduces the specific operations of using the Speech Interaction 
Service on Huawei’s public cloud to carry out experiments. It mainly implements related 
functions by issuing RestFul requests through the SDK. When using the SDK to issue RestFul 
requests, you need to use the necessary tools The configuration of user authentication 
information is mainly introduced and explained on the system for AK\SK in this chapter, 
which helps trainees to use speech synthesis to provide practical operation guidance. 
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3 Speech Recognition Based on Seq2Seq 

3.1 Introduction 

3.1.1 About this lab 
The RNN is suitable for modeling data of the sequence type. Audio data is of this type. 
Therefore, compared with images, the RNN is better adapted to audio data of this sequence 
type to recognize audio. Seq2Seq uses the RNN series models and becomes a unique model 
structure, which is suitable for the scenario where the input is a sequence and the output 
is also a sequence. 

3.1.2 Objectives 
Upon completion of this task, you will be able to: 

 Have a good command of building the Seq2Seq model by using Keras in 
TensorFlow2.0. 

 Have a good command of using the Seq2Seq model to recognize voices. 

 

3.1.3 Knowledge Required 
This experiment requires knowledge in three aspects: 

 The theoretical basis of Seq2Seq is available. 

 Keras programming is supported. 

 Basic programming in Python. 

3.2 Procedure 
This chapter is based on the Wave framework. The main steps are as follows: 

 Read and preprocess data. 

 Create a Seq2Seq model, train and test it. 

 

Step 1 Import related modules 

Code: 
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#coding=utf-8 
import warnings 
warnings.filterwarnings("ignore") 
import time 
import tensorflow as tf 
import scipy.io.wavfile as wav 
import numpy as np 
from six.moves import xrange as range 
from python_speech_features import mfcc 
from tensorflow.keras.layers import Input,LSTM,Dense 
from tensorflow.keras.models import Model,load_model 
import pandas as pd 
import numpy as np 

Step 2 Configure data path 

Code: 

audio_filename = "data/audio.wav" 
target_filename = "data/label.txt" 

Step 3 Read data and perform feature extraction 

Code: 

def sparse_tuple_from(sequences, dtype=np.int32): 
    indices = [] 
    values = [] 
 
    for n, seq in enumerate(sequences): 
        indices.extend(zip([n]*len(seq), range(len(seq)))) 
        values.extend(seq) 
     
    indices = np.asarray(indices, dtype=np.int64) 
    values = np.asarray(values) 
    shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1]+1], dtype=np.int64) 
 
    return indices, values, shape 
 
def get_audio_feature(): 
    # Read the content of the wav file, fs is the sampling rate, audio_filename is the data 
    fs, audio = wav.read(audio_filename) 
 
    #Extract mfcc features 
    inputs = mfcc(audio, samplerate=fs) 
    #Standardize characteristic data, subtract the mean divided by the standard deviation 
    feature_inputs = np.asarray(inputs[np.newaxis, :]) 
    feature_inputs = (feature_inputs - np.mean(feature_inputs))/np.std(feature_inputs) 
 
    # Characteristic data sequence length 
    feature_seq_len = [feature_inputs.shape[1]] 
    return feature_inputs, feature_seq_len 
feature_inputs, feature_seq_len = get_audio_feature() 
 
def get_audio_label(): 
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    with open(target_filename, 'r') as f: 
        # The original text is “i like you , do you like me” 
        line = f.readlines()[0].strip() 
    # Put it in the list, replace the space with ' ' 
    #['i', ' ', 'like', ' ', 'you',' ', ',',' ', 'do', ' ', 'you', ' ', 'like', ' ', 'me'] 
    targets = line.split(' ') 
    targets.insert(0,'<START>') 
    targets.append("<END>") 
    print(targets)  
    # Convert the list into sparse triples 
    train_targets = sparse_tuple_from([targets]) 
    return targets,train_targets 
line_targets,train_traget=get_audio_label() 
 
Result： 
['<START>', 'i', 'like', 'you', ',', 'do', 'you', 'like', 'me', '<END>'] 

Step 4 Configure neural network parameters  

Code: 

target_characters = list(set(line_targets)) 
INUPT_LENGTH = feature_inputs.shape[-2] 
OUTPUT_LENGTH = train_traget[-1][-1] 
INPUT_FEATURE_LENGTH = feature_inputs.shape[-1] 
OUTPUT_FEATURE_LENGTH = len(target_characters) 
N_UNITS = 256 
BATCH_SIZE = 1 
EPOCH = 20 
NUM_SAMPLES = 1 
target_texts = [] 
target_texts.append(line_targets) 

Step 5 Create Seq2Seq model 

Code： 

def create_model(n_input,n_output,n_units): 
    #encoder 
    encoder_input = Input(shape = (None, n_input)) 
    # The input dimension n_input is the dimension of the input xt at each time step 
    encoder = LSTM(n_units, return_state=True) 
    # n_units is the number of neurons in each gate in the LSTM unit, and only when return_state is 
#set to True will it return to the last state h, c 
    _,encoder_h,encoder_c = encoder(encoder_input) 
    encoder_state = [encoder_h,encoder_c] 
    #Keep the final state of the encoder as the initial state of the decoder  
    #decoder 
    decoder_input = Input(shape = (None, n_output)) 
    #The input dimension of decoder is the number of characters 
    decoder = LSTM(n_units,return_sequences=True, return_state=True) 
    # When training the model, the output sequence of the decoder is required to compare and 
#optimize the result, so return_sequences should also be set to True 
    decoder_output, _, _ = decoder(decoder_input,initial_state=encoder_state) 
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    #In the training phase, only the output sequence of the decoder is used, and the final state h.c is 
#not required 
    decoder_dense = Dense(n_output,activation='softmax') 
    decoder_output = decoder_dense(decoder_output) 
    # The output sequence passes through the fully connected layer to get the result 
    #Generated training model 
    model = Model([encoder_input,decoder_input],decoder_output) 
    # The first parameter is the input of the training model, including the input of encoder and 
#decoder, and the second parameter is the output of the model, including the output of the decoder 
    # Inference stage, used in the prediction process 
    # Inference model—encoder 
    encoder_infer = Model(encoder_input,encoder_state) 
     
    # Inference model -decoder 
    decoder_state_input_h = Input(shape=(n_units,)) 
    decoder_state_input_c = Input(shape=(n_units,)) 
    # The state of the last moment h,c 
    decoder_state_input = [decoder_state_input_h, decoder_state_input_c] 
     

decoder_infer_output, decoder_infer_state_h, decoder_infer_state_c = 
decoder(decoder_input,initial_state=decoder_state_input) 
    #The current state 
    decoder_infer_state = [decoder_infer_state_h, decoder_infer_state_c]  
    decoder_infer_output = decoder_dense(decoder_infer_output)# Current time output 
    decoder_infer = 
Model([decoder_input]+decoder_state_input,[decoder_infer_output]+decoder_infer_state) 
     
    return model, encoder_infer, decoder_infer 
model_train, encoder_infer, decoder_infer = create_model(INPUT_FEATURE_LENGTH, 
OUTPUT_FEATURE_LENGTH, N_UNITS) 
model_train.compile(optimizer='adam', loss='categorical_crossentropy') 
model_train.summary() 

 

Result: 

Model: "model" 
_________________________________________________________________________________________ 
Layer (type)                    Output Shape         Param #     Connected to     
======================================================================= 
input_1 (InputLayer)            (None, None, 13)     0                              
_________________________________________________________________________________________ 
input_2 (InputLayer)            (None, None, 8)      0                              
_________________________________________________________________________________________ 
lstm_1 (LSTM)                   [(None, 256), (None, 276480      input_1[0][0]     
_________________________________________________________________________________________ 
lstm_2 (LSTM)                   [(None, None, 256),  271360      input_2[0][0]     
                                                                 lstm_1[0][1]     
                                                                 lstm_1[0][2]      
_________________________________________________________________________________________ 
dense_1 (Dense)                 (None, None, 8)      2056        lstm_2[0][0]      
======================================================================= 
Total params: 549,896 
Trainable params: 549,896 
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Non-trainable params: 0 
_________________________________________________________________________________________ 
 

Step 6 Configure training data 

Code： 

encoder_input = feature_inputs 
decoder_input = np.zeros((NUM_SAMPLES,OUTPUT_LENGTH,OUTPUT_FEATURE_LENGTH)) 
decoder_output = np.zeros((NUM_SAMPLES,OUTPUT_LENGTH,OUTPUT_FEATURE_LENGTH)) 
target_dict = {char:index for index,char in enumerate(target_characters)} 
target_dict_reverse = {index:char for index,char in enumerate(target_characters)} 
 
print(decoder_input.shape) 
for seq_index,seq in enumerate(target_texts):  
     
    for char_index,char in enumerate(seq):         
        print(char_index,char) 
        decoder_input[seq_index,char_index,target_dict[char]] = 1.0 
        if char_index > 0: 
            decoder_output[seq_index,char_index-1,target_dict[char]] = 1.0 

Result: 

(1, 10, 8) 
0 <START> 
1 i 
2 like 
3 you 
4 , 
5 do 
6 you 
7 like 
8 me 
9 <END> 

Step 7 Model training 

Code： 

#Get training data, in this example only one sample of training data 
model_train.fit([encoder_input,decoder_input],decoder_output,batch_size=BATCH_SIZE,epochs=EPOC
H,validation_split=0) 

Result: 

Train on 1 samples 
Epoch 1/20 
1/1 [==============================] - 6s 6s/sample - loss: 1.6983 
Epoch 2/20 
1/1 [==============================] - 0s 464ms/sample - loss: 1.6155 
Epoch 3/20 
1/1 [==============================] - 1s 502ms/sample - loss: 1.5292 
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Epoch 4/20 
1/1 [==============================] - 0s 469ms/sample - loss: 1.4335 
Epoch 5/20 
1/1 [==============================] - 1s 520ms/sample - loss: 1.3506 
Epoch 6/20 
1/1 [==============================] - 0s 445ms/sample - loss: 1.2556 
Epoch 7/20 
1/1 [==============================] - 0s 444ms/sample - loss: 1.1671 
Epoch 8/20 
1/1 [==============================] - 0s 424ms/sample - loss: 1.0965 
Epoch 9/20 
1/1 [==============================] - 0s 432ms/sample - loss: 1.0321 
Epoch 10/20 
1/1 [==============================] - 0s 448ms/sample - loss: 0.9653 
Epoch 11/20 
1/1 [==============================] - 1s 501ms/sample - loss: 0.9038 
Epoch 12/20 
1/1 [==============================] - 0s 471ms/sample - loss: 0.8462 
Epoch 13/20 
1/1 [==============================] - 0s 453ms/sample - loss: 0.7752 
Epoch 14/20 
1/1 [==============================] - 0s 444ms/sample - loss: 0.7188 
Epoch 15/20 
1/1 [==============================] - 0s 452ms/sample - loss: 0.6608 
Epoch 16/20 
1/1 [==============================] - 0s 457ms/sample - loss: 0.6058 
Epoch 17/20 
1/1 [==============================] - 1s 522ms/sample - loss: 0.5542 
Epoch 18/20 
1/1 [==============================] - 0s 444ms/sample - loss: 0.5001 
Epoch 19/20 
1/1 [==============================] - 0s 433ms/sample - loss: 0.4461 
Epoch 20/20 
1/1 [==============================] - 0s 432ms/sample - loss: 0.4020 
<tensorflow.python.keras.callbacks.History at 0x1ecacdec128> 

Step 8 Model testing 

Code： 

def predict_chinese(source,encoder_inference, decoder_inference, n_steps, features): 
# First obtain the hidden state of the predicted input sequence through the inference encoder 

    state = encoder_inference.predict(source) 
    # The first character'\t' is the starting mark 
    predict_seq = np.zeros((1,1,features)) 
    predict_seq[0,0,target_dict['<START>']] = 1 
 
    output = '' 
    # Start to predict about the hidden state obtained by the encoder 
    # Each cycle uses the last predicted character as input to predict the next character until the 
#terminator is predicted  
    for i in range(n_steps):#n_steps is maximum sentence length 
        # Input the hidden state of h, c at the last moment to the decoder, and the predicted 
#character predict_seq of the last time 
        yhat,h,c = decoder_inference.predict([predict_seq]+state) 
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        # Note that yhat here is the result output after Dense, so it is different from h 
        char_index = np.argmax(yhat[0,-1,:]) 
        char = target_dict_reverse[char_index] 
#         print(char) 
         
        state = [h,c] # This state will continue to be passed as the next initial state  
        predict_seq = np.zeros((1,1,features)) 
        predict_seq[0,0,char_index] = 1 
        if char == '<END>': # Stop when the terminator is predicted 
            break 
        output +=" " +char 
return output 
out = 
predict_chinese(encoder_input,encoder_infer,decoder_infer,OUTPUT_LENGTH,OUTPUT_FEATURE_LEN
GTH) 
print(out) 

Result: 

i like you , do you like me 
 
This experiment only uses one training sample. Interested students can further expand 
the model to train on more sample spaces. In addition, the model obtained during 
each training may have different output results during prediction due to different  

3.3 Summary 
The main content of this experiment is based on Python and scipy, python_speech_features, 
six, keras, and TensorFlow frameworks to recognize speech data through Seq2Seq. After 
the experiment, trainees can master the construction of Seq2Seq model through Keras and 
the application of Seq2Seq model to speech recognition. 
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Huawei Certificate System 
Huawei's certification system is the industry's only one that covers all ICT technical 

fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT 
technical architecture featuring cloud-pipe-device synergy. It provides three types of 
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT 
Vertical Certification. 

To meet ICT professionals' progressive requirements, Huawei offers three levels of 
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional 
(HCIP), and Huawei Certified ICT Expert (HCIE). 

HCIP-AI-EI Developer V2.0 certification is intended to cultivate professionals who 
have acquired basic theoretical knowledge about image processing, speech processing, 
and natural language processing and who are able to conduct development and 
innovation using Huawei enterprise AI solutions (such as HUAWEI CLOUD EI), general 
open-source frameworks, and ModelArts, a one-stop development platform for AI 
developers. 

The content of HCIP-AI-EI Developer V2.0 certification includes but is not limited to: 
neural network basics, image processing theory and applications, speech processing 
theory and applications, natural language processing theory and applications, 
ModelArts overview, and image processing, speech processing, natural language 
processing, and ModelArts platform development experiments. ModelArts is a one-stop 
development platform for AI developers. With data preprocessing, semi-automatic data 
labeling, large-scale distributed training, automatic modeling, and on-demand model 
deployment on devices, edges, and clouds, ModelArts helps AI developers build models 
quickly and manage the lifecycle of AI development. Compared with V1.0, HCIP-AI-EI 
Developer V2.0 adds the ModelArts overview and development experiments. In 
addition, some new EI cloud services are updated. 

HCIP-AI-EI Developer V2.0 certification proves that you have systematically 
understood and mastered neural network basics, image processing theory and 
applications, speech processing theory and applications, ModelArts overview, natural 
language processing theory and applications, image processing application 
development, speech processing application development, natural language processing 
application development, and ModelArts platform development. With this certification, 
you will acquire (1) the knowledge and skills for AI pre-sales technical support, AI 
after-sales technical support, AI product sales, and AI project management; (2) the 
ability to serve as an image processing developer, speech processing developer, or 
natural language processing developer. 
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About This Document 

Overview 

This document is a training course for HCIP-AI certification. It is intended for trainees who 
are going to take the HCIP-AI exam or readers who want to understand basic AI knowledge. 
After mastering this lab, you can use the Python SDK to call NLP APIs of HUAWEI CLOUD 
EI or use ModelArts to build and train your NLP algorithm models.  

Description 
This lab consists of three groups of experiments, involving basic algorithms for natural 
language processing, natural language understanding, and natural language generation. 
 Experiment 1: HUAWEI CLOUD EI Natural Language Processing Service 
 Experiment 2: Text classification 
 Experiment 3: Machine Translation 

Background Knowledge Required 
This course is a basic course for Huawei certification. To better master the contents of this 
course, readers must: 
 Basic Python language editing capability 
 Have a certain theoretical basis for natural language processing. 
 Understand the TensorFlow framework. 

Experiment Environment Overview 
 ModelArts TensorFlow-2.1.0 8-core 32 g CPU environment 
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1 HUAWEI CLOUD EI Natural Language 
Processing Service 

1.1 Introduction 
Natural Language Processing (NLP) is artificial intelligence technologies for text analysis 
and mining. HUAWEI CLOUD provide the NLP services aim to help users efficiently process 
text. 

NLP consists of the following subservices, but most services are only support Chineses 
language: 

Natural Language Processing Fundamentals (NLPF) provides APIs related to natural 
languages, such as word segmentation, naming entity recognition (NER), keyword 
extraction, and short text similarity, it can be used in scenarios such as intelligent Q&A, 
chatbot, public opinion analysis, content recommendation, and e-commerce evaluation 
analysis. 

Language Generation (LG) provides APIs related to language generation for users, such as 
text abstracts. It can be used in scenarios such as news abstract generation, document 
abstract generation, search result fragment generation, and commodity review abstract. 

Language Understanding (LU) provides APIs related to language understanding, such as 
text classification and emotion analysis, and can be used in scenarios such as emotion 
analysis, content detection, and advertisement recognition. 

1.2 Objective 
This experiment describes how to use NLP services in HUAWEI CLOUD. Currently, HUAWEI 
CLOUD provides the Python SDK for NLP. This experiment will guide trainees to understand 
and master how to use the Python SDK to call NLP services. 

1.3 Procedure 
In this experiment, you need to download the NLP SDK from HUAWEI CLOUD and access 
the service in two ways: AK/SK information is used for identity authentication, and the 
underlying API service of the SDK is invoked to submit a RESTful service request. Token 
information of a user is used to submit a RESTful request. The procedure is as follows: 
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1.3.1 Preparing the Experiment Environment 
1.3.1.1 Obtain the project code 

Step 1 Register and log in to the console. 

 

 

Step 2 Click the username and select “My Credentials” from the drop-down list. 

 

Step 3 On the My Credential page, view the project ID in the projects list. 
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1.3.1.2 Download and Use the SDK 

Step 1 Go to the created notebook environment with the 8-core 32 GB modelArts 
TensorFlow2.1.0 configuration. 

 

Step 2 Go to the notebook page, create a folder, and rename the folder 
“huawei_cloud_ei”. 
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Step 3 Click the newly created huawei_cloud_ei folder. 

 
 

Step 4 Create a notebook file and select the conda-python3 environment. 
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Step 5 Download the Python SDK 

Input: 

! wget https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
AI%20EI%20Developer/V2.1/nlp-sdk-python.zip 

Output: 

 

Step 6 Decompressing the SDK 

Input: 

! unzip nlp-sdk-python.zip 

Output: 

 

1.3.2 NLP Basic Service 
Step 1 Importing SDKs 
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Input: 

import json 
from huaweicloud_nlp.MtClient import MtClient 
from huaweicloud_nlp.NlpfClient import NlpfClient 
from huaweicloud_nlp.NluClient import NluClient 
from huaweicloud_nlp.NlgClient import NlgClient 
from huaweicloud_nlp.HWNlpClientToken import HWNlpClientToken 
import warnings 
warnings.filterwarnings("ignore") 

Step 2 Token authentication 

Input: 

tokenClient = HWNlpClientToken("domain_name", "user_name", "your_password", "cn-north-4", 
"your_project_id") 

The token authentication mode is used. You need to enter the domain account name, user 
name, password, region, and project ID.  

Step 3 Initializing the Client 

Input: 

nlpfClient = NlpfClient(tokenClient) 

Step 4 Named Entity Recognition (Basic Edition) 

This API is used for named entity recognition (NER). Currently, it can be called to identify 
and analyze person names, locations, time, and organization names in the text. 

Input: 

response = nlpfClient.ner("President Donald Trump said on Thursday (Oct 8) he may return to the 
campaign trail with a rally on Saturday after the White House physician said he had completed his 
course of therapy for the novel coronavirus and could resume public events.", "en") 

print(json.dumps(response.res,ensure_ascii=False)) 

Output: 

 

1.3.3 Natural Language Generation Service 
Step 1 Initializing the Client 

Input: 

nlgClient = NlgClient(tokenClient) 
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Step 2 Text Summary (Basic) 

Input: 

response = nlgClient.summary("As the United States continues its struggle with the pandemic-
induced economic recession and a sputtering recovery, the country's burgeoning debt is not anyone's 
top concern these days.  Even deficit hawks are urging a dysfunctional Washington and a chaotic 
White House to approve another round of badly needed stimulus to the tune of trillions.  The US 
federal budget is on an unsustainable path, has been for some time,  Federal Reserve Chairman 
Jerome Powell said this week. But, Powell added,  This is not the time to give priority to those 
concerns.  However, when the country eventually pulls out of its current health and economic crises, 
Americans will be left with a debt hangover. On Thursday, the Congressional Budget Office estimated 
that for fiscal year 2020, which ended September 30, the US deficit hit $3.13 trillion -- or 15.2% of 
GDP -- thanks to the chasm between what the country spent ($6.55 trillion) and what it took in 
($3.42 trillion) for the year. As a share of the economy, the estimated 2020 deficit is more than triple 
what the annual deficit was in 2019. And it's the highest it has been since just after World War II. The 
reason for the huge year-over-year jump is simple: Starting this spring, the federal government spent 
more than $4 trillion to help stem the economic pain to workers and businesses caused by sudden 
and widespread business shutdowns. And most people agree more money will need to be spent until 
the White House manages to get the Covid-19 crisis under control. The Treasury Department won't 
put out final numbers for fiscal year 2020 until later this month. But if the CBO's estimates are on the 
mark, the country's total debt owed to investors -- which is essentially the sum of annual deficits that 
have accrued over the years -- will have outpaced the size of the economy, coming in at nearly 102% 
of GDP, according to calculations from the Committee for a Responsible Federal Budget. The debt 
hasn't been that high since 1946, when the federal debt was 106.1% of GDP.  Debt is the size of the 
economy today, and soon it will be larger than any time in history,  CRFB president Maya 
MacGuineas said. The problem with such high debt levels going forward is that they will increasingly 
constrain what the government can do to meet the country's needs. Spending is projected to continue 
rising and is far outpacing revenue. And interest payments alone on the debt -- even if rates remain 
low -- will consume an ever-growing share of tax dollars. Given the risks of future disruptions, like a 
pandemic, a debt load that already is outpacing economic growth puts the country at greater risk of 
a fiscal crisis, which in turn would require sharp cuts to the services and benefits on which Americans 
rely.  There is no set tipping point at which a fiscal crisis becomes likely or imminent, nor is there an 
identifiable point at which interest costs as a percentage of GDP become unsustainable,  CBO 
director Phillip Swagel said last month.  But as the debt grows, the risks become greater.  ","The US 
debt is now projected to be larger than the US economy",None,"en") 

print(json.dumps(response.res, ensure_ascii=False)) 

Output: 

 

1.4 Experiment Summary 
This chapter describes how to use NLP services in HUAWEI CLOUD to perform experiments, 
including “Named Entity Recognition(NER)” and “Text Summary”. 
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2 Text Classification 

2.1 Introduction 
This chapter describes how to implement a text classification model. The specific task is 
Sentiment Analysis by user comments. The models include: 

 Naive Bayes 

 Support Vector Machine 

 TextCNN 

2.2 Objective 
 Understand the basic principles and process of text categorization tasks. 

 Understand the differences between Naive Bayes, SVM, and TextCNN 
algorithms. 

 Master the method of building a neural network based on TensorFlow 2.x. 

2.3 Procedure 

2.3.1 Environment Preparation 
Step 1 Go to the notebook page, create a folder, and rename the folder text_classification. 
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Step 2 Click the created text_classification folder. 

 

Step 3 Create a notebook file and select the TensorFlow-2.1.0 environment. 

 

Step 4 Downloading Data 

Input: 
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!wget https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
AI%20EI%20Developer/V2.1/nlpdata.zip 

Output: 

 

Step 5 Decompressing Data 

Input: 

!unzip nlpdata.zip 

Output: 

 

2.3.2 Naive Bayesian text classification 
Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment. 

 

Step 2 Importing Related Library 

Input: 

import re 
import pandas as pd 
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import numpy as np 
from sklearn.metrics import classification_report 
from sklearn.naive_bayes import MultinomialNB 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.metrics import classification_report, accuracy_score 

Step 3 Data preprocessing 

Input: 

def clean_str(string): 
    """ 
    Tokenization/string cleaning for all datasets except for SST. 
    Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py 
    """ 
    string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) 
    string = re.sub(r"\'s", " \'s", string) 
    string = re.sub(r"\'ve", " \'ve", string) 
    string = re.sub(r"n\'t", " n\'t", string) 
    string = re.sub(r"\'re", " \'re", string) 
    string = re.sub(r"\'d", " \'d", string) 
    string = re.sub(r"\'ll", " \'ll", string) 
    string = re.sub(r",", " , ", string) 
    string = re.sub(r"!", " ! ", string) 
    string = re.sub(r"\(", " \( ", string) 
    string = re.sub(r"\)", " \) ", string) 
    string = re.sub(r"\?", " \? ", string) 
    string = re.sub(r"\s{2,}", " ", string) 
    return string.strip().lower() 
 
 
def load_data_and_labels(positive_data_file, negative_data_file): 
    """ 
    Loads MR polarity data from files, splits the data into words and generates labels. 
    Returns split sentences and labels. 
    """ 
    # Load data from files 
    positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines()) 
    positive_examples = [s.strip() for s in positive_examples] 
    negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines()) 
    negative_examples = [s.strip() for s in negative_examples] 
    # Split by words 
    x = positive_examples + negative_examples 
    x = [clean_str(sent) for sent in x] 
    x = np.array(x) 
    # Generate labels 
    positive_labels = [1] * len(positive_examples) 
    negative_labels = [0] * len(negative_examples) 
    y = np.concatenate([positive_labels, negative_labels], 0) 
     
     
    shuffle_indices = np.random.permutation(np.arange(len(y))) 
    shuffled_x = x[shuffle_indices] 
    shuffled_y = y[shuffle_indices] 
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    return shuffled_x, shuffled_y 
 

Load data: 

positive_data_file = 'data/rt-polarity.pos' 
negative_data_file = 'data/rt-polarity.neg' 
x, y = load_data_and_labels(positive_data_file, negative_data_file) 

Show data features: 

x[:5] 

Output: 

 
Show data labels: 

y[:5] 

Output: 

 
Input: 

test_size = 2000 
x_train, y_train = x[:-2000], y[:-2000] 
x_test, y_test = x[-2000:], y[-2000:] 
label_map = {0: 'negative', 1: 'positive'} 

Step 4 Define the main class of the classifier and define the training and test functions. 

Input: 

class NB_Classifier(object): 
     
    def __init__(self): 
        # naive bayes 
        self.model = MultinomialNB( alpha=1) #Laplace smooth：1 
        # use tf-idf extract features 
        self.feature_processor = TfidfVectorizer() 
         
    def fit(self, x_train, y_train, x_test, y_test): 
        # tf-idf extract features 
        x_train_fea = self.feature_processor.fit_transform(x_train) 
        self.model.fit(x_train_fea, y_train) 
         
        train_accuracy = self.model.score(x_train_fea, y_train) 
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        print("Training Accuracy：{}".format(round(train_accuracy, 3))) 
         
        x_test_fea = self.feature_processor.transform(x_test) 
        y_predict = self.model.predict(x_test_fea) 
        test_accuracy = accuracy_score(y_test, y_predict) 
        print("Test Accuracy：{}".format(round(test_accuracy, 3))) 
         
        y_predict = self.model.predict(x_test_fea) 
        print('Test set evaluate：') 
        print(classification_report(y_test, y_predict, target_names=['0', '1'])) 
         
    def single_predict(self, text): 
 
        text_fea = self.feature_processor.transform([text]) 
        predict_idx = self.model.predict(text_fea)[0] 
        predict_label = label_map[predict_idx] 
        predict_prob = self.model.predict_proba(text_fea)[0][predict_idx] 
         
        return predict_label, predict_prob 

Step 5 Initialize and train the classifier. 

Input: 

nb_classifier = NB_Classifier() 
nb_classifier.fit(x_train, y_train, x_test, y_test) 

Output: 

 

Step 6 Single sentence test 

Test the prediction result of a single sentence: 

Input: 

nb_classifier.single_predict("beautiful actors, great movie") 

Output: 

 
Input: 

nb_classifier.single_predict("it's really boring") 

Output: 
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2.3.3 SVM Text Classification 
Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment. 

 

Step 2 Importing Related Modules 

import re 
import pandas as pd 
import numpy as np 
from sklearn import svm 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.feature_selection import SelectKBest, chi2 
from sklearn.metrics import classification_report, accuracy_score 
 

Step 3 Data preprocessing 

Input: 

def clean_str(string): 
    """ 
    Tokenization/string cleaning for all datasets except for SST. 
    Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py 
    """ 
    string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) 
    string = re.sub(r"\'s", " \'s", string) 
    string = re.sub(r"\'ve", " \'ve", string) 
    string = re.sub(r"n\'t", " n\'t", string) 
    string = re.sub(r"\'re", " \'re", string) 
    string = re.sub(r"\'d", " \'d", string) 
    string = re.sub(r"\'ll", " \'ll", string) 
    string = re.sub(r",", " , ", string) 
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    string = re.sub(r"!", " ! ", string) 
    string = re.sub(r"\(", " \( ", string) 
    string = re.sub(r"\)", " \) ", string) 
    string = re.sub(r"\?", " \? ", string) 
    string = re.sub(r"\s{2,}", " ", string) 
    return string.strip().lower() 
 
 
def load_data_and_labels(positive_data_file, negative_data_file): 
    """ 
    Loads MR polarity data from files, splits the data into words and generates labels. 
    Returns split sentences and labels. 
    """ 
    # Load data from files 
    positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines()) 
    positive_examples = [s.strip() for s in positive_examples] 
    negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines()) 
    negative_examples = [s.strip() for s in negative_examples] 
    # Split by words 
    x = positive_examples + negative_examples 
    x = [clean_str(sent) for sent in x] 
    x = np.array(x) 
    # Generate labels 
    positive_labels = [1] * len(positive_examples) 
    negative_labels = [0] * len(negative_examples) 
    y = np.concatenate([positive_labels, negative_labels], 0) 
     
     
    shuffle_indices = np.random.permutation(np.arange(len(y))) 
    shuffled_x = x[shuffle_indices] 
    shuffled_y = y[shuffle_indices] 
     
    return shuffled_x, shuffled_y 
 

Load data: 

positive_data_file = 'data/rt-polarity.pos' 
negative_data_file = 'data/rt-polarity.neg' 
x, y = load_data_and_labels(positive_data_file, negative_data_file) 

Show data features: 

x[:5] 

Output: 

 
Show data labels: 
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y[:5] 

Output: 

 
Input: 

test_size = 2000 
x_train, y_train = x[:-2000], y[:-2000] 
x_test, y_test = x[-2000:], y[-2000:] 
label_map = {0: 'negative', 1: 'positive'} 

Step 4 Define the main class of the classifier, define training, and test functions. 

class SVM_Classifier(object): 
     
    def __init__(self, use_chi=False): 
         
        self.use_chi = use_chi # Whether use chi-square test for feature selection 
        # SVM 
        self.model = svm.SVC(C=1.0, kernel='linear', degree=3, gamma='auto') 
        # use tf-idf extract features 
        self.feature_processor = TfidfVectorizer() 
        # chi-square test for feature selection 
        if use_chi: 
            self.feature_selector = SelectKBest(chi2, k=10000) # 34814 -> 10000 
         
    def fit(self, x_train, y_train, x_test, y_test): 
         
        x_train_fea = self.feature_processor.fit_transform(x_train) 
        if self.use_chi: 
            x_train_fea = self.feature_selector.fit_transform(x_train_fea, y_train) 
        self.model.fit(x_train_fea, y_train) 
         
        train_accuracy = self.model.score(x_train_fea, y_train) 
        print("Training Accuracy：{}".format(round(train_accuracy, 3))) 
         
        x_test_fea = self.feature_processor.transform(x_test) 
        if self.use_chi: 
            x_test_fea = self.feature_selector.transform(x_test_fea) 
        y_predict = self.model.predict(x_test_fea) 
        test_accuracy = accuracy_score(y_test, y_predict) 
        print("Test Accuracy：{}".format(round(test_accuracy, 3))) 
        print('Test set evaluate：') 
        print(classification_report(y_test, y_predict, target_names=['negative', 'positive'])) 
         
    def single_predict(self, text): 
        text_fea = self.feature_processor.transform([text]) 
        if self.use_chi: 
            text_fea = self.feature_selector.transform(text_fea) 
        predict_idx = self.model.predict(text_fea)[0] 
        predict_label = label_map[predict_idx] 
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        return predict_label 

Step 5 Train the SVM classifier without the chi-square test. 

Input: 

svm_classifier = SVM_Classifier() 
svm_classifier.fit(x_train, y_train, x_test, y_test) 

Output: 

 

Step 6 Train SVM classifiers and use chi-square test. 

Input: 

svm_classifier = SVM_Classifier(use_chi=True) 
svm_classifier.fit(x_train, y_train, x_test, y_test) 
 

Output: 

 

Step 7 chi-square feature analysis 

Input: 

def feature_analysis(): 
    feature_names = svm_classifier.feature_processor.get_feature_names() 
    feature_scores = svm_classifier.feature_selector.scores_ 
    fea_score_tups = list(zip(feature_names, feature_scores)) 
    fea_score_tups.sort(key=lambda tup: tup[1], reverse=True) 
     
    return fea_score_tups 
feature_analysis()[:500] 

Output: 
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Step 8 Single sentence test 

Test the prediction result of a single sentence: 

Input: 

svm_classifier.single_predict("beautiful actors, great movie") 

Output: 

 
Input: 

svm_classifier.single_predict("it's really boring") 

Output: 

 

2.3.4 TextCNN Text Classification 
Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment. 
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Step 2 Importing Related Library 

import re 
import pandas as pd 
import numpy as np 
import tensorflow as tf 
from tensorflow.keras.preprocessing.sequence import pad_sequences 
from sklearn.metrics import classification_report 
 

Step 3 Data preprocessing 

Input: 

def clean_str(string): 
    """ 
    Tokenization/string cleaning for all datasets except for SST. 
    Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py 
    """ 
    string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) 
    string = re.sub(r"\'s", " \'s", string) 
    string = re.sub(r"\'ve", " \'ve", string) 
    string = re.sub(r"n\'t", " n\'t", string) 
    string = re.sub(r"\'re", " \'re", string) 
    string = re.sub(r"\'d", " \'d", string) 
    string = re.sub(r"\'ll", " \'ll", string) 
    string = re.sub(r",", " , ", string) 
    string = re.sub(r"!", " ! ", string) 
    string = re.sub(r"\(", " \( ", string) 
    string = re.sub(r"\)", " \) ", string) 
    string = re.sub(r"\?", " \? ", string) 
    string = re.sub(r"\s{2,}", " ", string) 
    return string.strip().lower() 
 
 
def load_data_and_labels(positive_data_file, negative_data_file): 
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    """ 
    Loads MR polarity data from files, splits the data into words and generates labels. 
    Returns split sentences and labels. 
    """ 
    # Load data from files 
    positive_examples = list(open(positive_data_file, "r", encoding='utf-8').readlines()) 
    positive_examples = [s.strip() for s in positive_examples] 
    negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines()) 
    negative_examples = [s.strip() for s in negative_examples] 
    # Split by words 
    x = positive_examples + negative_examples 
    x = [clean_str(sent) for sent in x] 
    x = np.array(x) 
    # Generate labels 
    positive_labels = [1] * len(positive_examples) 
    negative_labels = [0] * len(negative_examples) 
    y = np.concatenate([positive_labels, negative_labels], 0) 
     
     
    shuffle_indices = np.random.permutation(np.arange(len(y))) 
    shuffled_x = x[shuffle_indices] 
    shuffled_y = y[shuffle_indices] 
     
    return shuffled_x, shuffled_y 
 

Load data: 

positive_data_file = 'data/rt-polarity.pos' 
negative_data_file = 'data/rt-polarity.neg' 
x, y = load_data_and_labels(positive_data_file, negative_data_file) 

Show data features: 

x[:5] 

Output: 

 
Show data labels: 

y[:5] 

Output: 

 
Input: 
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vocab = set() 
for doc in x: 
    for word in doc.split(' '): 
        if word.strip(): 
            vocab.add(word.strip().lower()) 
 
# write to vocab.txt file 
with open('data/vocab.txt', 'w') as file: 
    for word in  vocab: 
        file.write(word) 
        file.write('\n') 
test_size = 2000 
x_train, y_train = x[:-2000], y[:-2000] 
x_test, y_test = x[-2000:], y[-2000:] 
label_map = {0: 'negative', 1: 'positive'} 
 
class Config(): 
    embedding_dim = 100 # word embedding dimention 
    max_seq_len = 200 # max sequence length 
    vocab_file = 'data/vocab.txt' # vocab_file_length 
config = Config() 
 
class Preprocessor(): 
    def __init__(self, config): 
        self.config = config 
        # initial the map of word and index 
        token2idx = {"[PAD]": 0, "[UNK]": 1} # {word：id} 
        with open(config.vocab_file, 'r') as reader: 
            for index, line in enumerate(reader): 
                token = line.strip() 
                token2idx[token] = index+2 
                 
        self.token2idx = token2idx 
         
    def transform(self, text_list): 
        # tokenization, and transform word to coresponding index 
        idx_list = [[self.token2idx.get(word.strip().lower(), self.token2idx['[UNK]']) for word in 

text.split(' ')] for text in text_list] 
        idx_padding = pad_sequences(idx_list, self.config.max_seq_len, padding='post') 
         
        return idx_padding 
 
preprocessor = Preprocessor(config) 
preprocessor.transform(['I love working', 'I love eating']) 

Output: 
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Step 4 Defines the TextCNN main class, including model building, training, and test 
functions. 

class TextCNN(object): 
    def __init__(self, config): 
        self.config = config 
        self.preprocessor = Preprocessor(config) 
        self.class_name = {0: 'negative', 1: 'positive'} 
     
    def build_model(self): 
        # build model architecture 
        idx_input = tf.keras.layers.Input((self.config.max_seq_len,)) 
        input_embedding = tf.keras.layers.Embedding(len(self.preprocessor.token2idx), 
                    self.config.embedding_dim, 
                    input_length=self.config.max_seq_len, 
                    mask_zero=True)(idx_input) 
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        convs = [] 
        for kernel_size in [2, 3, 4, 5]: 
            c = tf.keras.layers.Conv1D(128, kernel_size, activation='relu')(input_embedding) 
            c = tf.keras.layers.GlobalMaxPooling1D()(c) 
            convs.append(c) 
        fea_cnn = tf.keras.layers.Concatenate()(convs) 
        fea_cnn = tf.keras.layers.Dropout(rate=0.5)(fea_cnn) 
        fea_dense = tf.keras.layers.Dense(128, activation='relu')(fea_cnn) 
        fea_dense = tf.keras.layers.Dropout(rate=0.5)(fea_dense) 
        fea_dense = tf.keras.layers.Dense(64, activation='relu')(fea_dense) 
        fea_dense = tf.keras.layers.Dropout(rate=0.3)(fea_dense) 
        output = tf.keras.layers.Dense(2, activation='softmax')(fea_dense) 
         
        model = tf.keras.Model(inputs=idx_input, outputs=output) 
        model.compile(loss='sparse_categorical_crossentropy', 
              optimizer='adam', 
              metrics=['accuracy']) 
         
        model.summary() 
         
        self.model = model 
     
    def fit(self, x_train, y_train, x_valid=None, y_valid=None, epochs=5, batch_size=128, **kwargs): 
        # train 
        self.build_model() 
         
        x_train = self.preprocessor.transform(x_train) 
        if x_valid is not None and y_valid is not None: 
            x_valid = self.preprocessor.transform(x_valid) 
 
        self.model.fit( 
            x=x_train, 
            y=y_train, 
            validation_data= (x_valid, y_valid) if x_valid is not None and y_valid is not None else 

None, 
            batch_size=batch_size, 
            epochs=epochs, 
            **kwargs 
        ) 
         
    def evaluate(self, x_test, y_test): 
        # evaluate 
        x_test = self.preprocessor.transform(x_test) 
        y_pred_probs = self.model.predict(x_test) 
        y_pred = np.argmax(y_pred_probs, axis=-1) 
        result = classification_report(y_test, y_pred, target_names=['negative', 'positive']) 
        print(result) 
         
         
    def single_predict(self, text): 
        # predict 
        input_idx = self.preprocessor.transform([text]) 
        predict_prob = self.model.predict(input_idx)[0] 
        predict_label_id = np.argmax(predict_prob) 
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        predict_label_name = self.class_name[predict_label_id] 
        predict_label_prob = predict_prob[predict_label_id] 
         
        return predict_label_name, predict_label_prob 
 

Step 5 Initialize the model and train the model. 

textcnn = TextCNN(config) 
textcnn.fit(x_train, y_train, x_test, y_test, epochs=10) # train 

 

Output: 

 

Step 6 Test Set Evaluation 
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textcnn.evaluate(x_test, y_test) # Test Set Evaluation 

Output: 

 

Step 7 Single sentence test 

Test the prediction result of a single sentence: 

Input: 

textcnn.single_predict("beautiful actors, great movie.") # single sentence predict 

Output: 

 
Input: 

textcnn.single_predict("it's really boring") # single sentence predict 

Output: 

 

2.4 Experiment Summary 
This chapter introduces the implementation of text classification tasks in NLP, through an 
application case of sentiment analysis. And this chapter compares the differences between 
three algorithms: Naive Bayes, SVM, and TextCNN. Through experiments, trainees can 
understand text classification tasks and Naive Bayes, SVM and TextCNN algorithms deeply. 
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3 Machine Translation 

3.1 Introduction 
This experiment describes how to use TensorFlow to build a machine translation model 
based on the “encoder-decoder” architecture and use the “attention” mechanism to further 
enhance the effect. 

3.2 Objective 
 Understand the basic principles of the encoder-decoder architecture. 
 Understand the algorithm process of machine translation. 
 Master the method of building a machine translation model using TensorFlow. 

3.3 Procedure 
Step 1 Go to the notebook home page, create a folder, and rename the folder 

machine_translation. 
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Step 2 Click the created machine_translation folder. 

 

Step 3 Create a notebook file and select the TensorFlow-2.1.0 environment. 

 

Step 4 Downloading Data 

Input: 

! wget https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
AI%20EI%20Developer/V2.1/spa-eng.zip 

Output: 
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Step 5 Decompressing Data 

Input: 

!unzip spa-eng.zip 

Output: 

 

Step 6 Importing Related Library 

Input: 

import tensorflow as tf 
 
import matplotlib.pyplot as plt 
import matplotlib.ticker as ticker 
from sklearn.model_selection import train_test_split 
 
import unicodedata 
import re 
import numpy as np 
import os 
import io 
import time 

Step 7 Specifying the data path 

Input: 

path_to_file = "./spa-eng/spa.txt" ## dataset file 

 

Step 8 Defining a Preprocessing Function 

Preprocessing includes: 

 Converts the unicode file to ascii 

 Replace particular characters with space  

 Add a start and end token to the sentence 
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Input: 

# Converts the unicode file to ascii 
def unicode_to_ascii(s): 
    return ''.join(c for c in unicodedata.normalize('NFD', s) 
        if unicodedata.category(c) != 'Mn') 
 
 
def preprocess_sentence(w): 
    w = unicode_to_ascii(w.lower().strip()) 
 
    # creating a space between a word and the punctuation following it 
    # eg: "he is a boy." => "he is a boy ." 
    # Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-
white-spaces-keeping-punctuation 
    w = re.sub(r"([?.!,¿])", r" \1 ", w) 
    w = re.sub(r'[" "]+', " ", w) 
 
    # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",") 
    w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w) 
 
    w = w.strip() 
 
    # adding a start and an end token to the sentence 
    # so that the model know when to start and stop predicting. 
    w = '<start> ' + w + ' <end>' 
    return w 

Preprocessing test: 

Input: 

en_sentence = u"May I borrow this book?" 
sp_sentence = u"¿Puedo tomar prestado este libro?" 
print(preprocess_sentence(en_sentence)) 
print(preprocess_sentence(sp_sentence).encode('utf-8')) 

Output: 

 
Input: 

# 1. Remove the accents 
# 2. Clean the sentences 
# 3. Return word pairs in the format: [ENGLISH, SPANISH] 
def create_dataset(path, num_examples): 
    lines = io.open(path, encoding='UTF-8').read().strip().split('\n') 
 
    word_pairs = [[preprocess_sentence(w) for w in l.split('\t')]  for l in lines[:num_examples]] 
 
    return zip(*word_pairs) 
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en, sp = create_dataset(path_to_file, None) 
print(en[-1]) 
print(sp[-1]) 

Output: 

 

Step 9 Load dataset 

The operations include: 

 Load the original data set. 

 Preprocessing 

 Convert text to ID 

Input: 

def tokenize(lang): 
    lang_tokenizer = tf.keras.preprocessing.text.Tokenizer( 
        filters='') 
    lang_tokenizer.fit_on_texts(lang) 
 
    tensor = lang_tokenizer.texts_to_sequences(lang) 
 
    tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, 
                                                         padding='post') 
 

return tensor, lang_tokenizer 
 
def load_dataset(path, num_examples=None): 
    # creating cleaned input, output pairs 
    targ_lang, inp_lang = create_dataset(path, num_examples) 
 
    input_tensor, inp_lang_tokenizer = tokenize(inp_lang) 
    target_tensor, targ_lang_tokenizer = tokenize(targ_lang) 
 

return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer 
 
# Try experimenting with the size of that dataset 
num_examples = 30000 
input_tensor, target_tensor, inp_lang, targ_lang = load_dataset(path_to_file, num_examples) 
 
# Calculate max_length of the target tensors 
max_length_targ, max_length_inp = target_tensor.shape[1], input_tensor.shape[1] 
 
# Creating training and validation sets using an 80-20 split 
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = 
train_test_split(input_tensor, target_tensor, test_size=0.2) 
 
# Show length 
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print(len(input_tensor_train), len(target_tensor_train), len(input_tensor_val), len(target_tensor_val)) 

Output: 

 
Convert text to ID: 

Input: 

def convert(lang, tensor): 
    for t in tensor: 
        if t!=0: 
            print ("%d ----> %s" % (t, lang.index_word[t])) 
 
print ("Input Language; index to word mapping") 
convert(inp_lang, input_tensor_train[0]) 
print () 
print ("Target Language; index to word mapping") 
convert(targ_lang, target_tensor_train[0]) 

Output: 

 
 

Step 10 Convert the file to tf.data.Dataset. 

Input: 

BUFFER_SIZE = len(input_tensor_train) 
BATCH_SIZE = 64 
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE 
embedding_dim = 256 
units = 1024 
vocab_inp_size = len(inp_lang.word_index)+1 
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vocab_tar_size = len(targ_lang.word_index)+1 
 
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, 
target_tensor_train)).shuffle(BUFFER_SIZE) 
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) 
 
example_input_batch, example_target_batch = next(iter(dataset)) 
example_input_batch.shape, example_target_batch.shape 

Output: 

 
 

Step 11 Defining an Encoder 

Input: 

class Encoder(tf.keras.Model): 
    def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz): 
        super(Encoder, self).__init__() 
        self.batch_sz = batch_sz 
        self.enc_units = enc_units 
        self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) 
        self.gru = tf.keras.layers.GRU(self.enc_units, 
                                       return_sequences=True, 
                                       return_state=True, 
                                       recurrent_initializer='glorot_uniform') 
 
    def call(self, x, hidden): 
        x = self.embedding(x) 
        output, state = self.gru(x, initial_state = hidden) 
        return output, state 
 
    def initialize_hidden_state(self): 
        return tf.zeros((self.batch_sz, self.enc_units)) 

Input: 

encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE) 
 
# sample input 
sample_hidden = encoder.initialize_hidden_state() 
sample_output, sample_hidden = encoder(example_input_batch, sample_hidden) 
print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape)) 
print ('Encoder Hidden state shape: (batch size, units) {}'.format(sample_hidden.shape)) 

Output: 
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Step 12 Defining the Attention Layer 

Input: 

class BahdanauAttention(tf.keras.layers.Layer): 
    def __init__(self, units): 
        super(BahdanauAttention, self).__init__() 
        self.W1 = tf.keras.layers.Dense(units) 
        self.W2 = tf.keras.layers.Dense(units) 
        self.V = tf.keras.layers.Dense(1) 
 
    def call(self, query, values): 
        # query hidden state shape == (batch_size, hidden size) 
        # query_with_time_axis shape == (batch_size, 1, hidden size) 
        # values shape == (batch_size, max_len, hidden size) 
        # we are doing this to broadcast addition along the time axis to calculate the score 
        query_with_time_axis = tf.expand_dims(query, 1) 
 
        # score shape == (batch_size, max_length, 1) 
        # we get 1 at the last axis because we are applying score to self.V 
        # the shape of the tensor before applying self.V is (batch_size, max_length, units) 
        score = self.V(tf.nn.tanh( 
            self.W1(query_with_time_axis) + self.W2(values))) 
 
        # attention_weights shape == (batch_size, max_length, 1) 
        attention_weights = tf.nn.softmax(score, axis=1) 
 
        # context_vector shape after sum == (batch_size, hidden_size) 
        context_vector = attention_weights * values 
        context_vector = tf.reduce_sum(context_vector, axis=1) 
 
        return context_vector, attention_weights 

Input: 

attention_layer = BahdanauAttention(10) 
attention_result, attention_weights = attention_layer(sample_hidden, sample_output) 
 
print("Attention result shape: (batch size, units) {}".format(attention_result.shape)) 
print("Attention weights shape: (batch_size, sequence_length, 1) {}".format(attention_weights.shape)) 

Output: 
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Step 13 Defining a Decoder 

Input: 

class Decoder(tf.keras.Model): 
    def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz): 
        super(Decoder, self).__init__() 
        self.batch_sz = batch_sz 
        self.dec_units = dec_units 
        self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) 
        self.gru = tf.keras.layers.GRU(self.dec_units, 
                                       return_sequences=True, 
                                       return_state=True, 
                                       recurrent_initializer='glorot_uniform') 
        self.fc = tf.keras.layers.Dense(vocab_size) 
 
        # used for attention 
        self.attention = BahdanauAttention(self.dec_units) 
 
    def call(self, x, hidden, enc_output): 
        # enc_output shape == (batch_size, max_length, hidden_size) 
        context_vector, attention_weights = self.attention(hidden, enc_output) 
 
        # x shape after passing through embedding == (batch_size, 1, embedding_dim) 
        x = self.embedding(x) 
 
        # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size) 
        x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) 
 
        # passing the concatenated vector to the GRU 
        output, state = self.gru(x) 
 
        # output shape == (batch_size * 1, hidden_size) 
        output = tf.reshape(output, (-1, output.shape[2])) 
 
        # output shape == (batch_size, vocab) 
        x = self.fc(output) 
 
        return x, state, attention_weights 

Input: 

decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE) 
 
sample_decoder_output, _, _ = decoder(tf.random.uniform((BATCH_SIZE, 1)), 
                                      sample_hidden, sample_output) 
 
print ('Decoder output shape: (batch_size, vocab size) {}'.format(sample_decoder_output.shape)) 

Output: 
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Step 14 Define optimizers and losses 

Input: 

optimizer = tf.keras.optimizers.Adam() 
loss_object = tf.keras.losses.SparseCategoricalCrossentropy( 
    from_logits=True, reduction='none') 
 
def loss_function(real, pred): 
    mask = tf.math.logical_not(tf.math.equal(real, 0)) 
    loss_ = loss_object(real, pred) 
 
    mask = tf.cast(mask, dtype=loss_.dtype) 
    loss_ *= mask 
 
    return tf.reduce_mean(loss_) 

Step 15 Setting the checkpoint storage path 

Input: 

checkpoint_dir = './training_checkpoints' 
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") 
checkpoint = tf.train.Checkpoint(optimizer=optimizer, 
                                 encoder=encoder, 
                                 decoder=decoder) 

Step 16 Train model 

The operations include: 

 Pass the input through the encoder which return encoder output and the encoder 
hidden state. 

 The encoder output, encoder hidden state and the decoder input (which is the 
start token) is passed to the decoder. 

 The decoder returns the predictions and the decoder hidden state. 
 The decoder hidden state is then passed back into the model and the predictions 

are used to calculate the loss. 
 Use teacher forcing to decide the next input to the decoder. 
 Teacher forcing is the technique where the target word is passed as the next 

input to the decoder. 
 The final step is to calculate the gradients and apply it to the optimizer and 

backpropagate. 

Input: 
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@tf.function 
def train_step(inp, targ, enc_hidden): 
    loss = 0 
 
    with tf.GradientTape() as tape: 
        enc_output, enc_hidden = encoder(inp, enc_hidden) 
 
        dec_hidden = enc_hidden 
 
        dec_input = tf.expand_dims([targ_lang.word_index['<start>']] * BATCH_SIZE, 1) 
 
        # Teacher forcing - feeding the target as the next input 
        for t in range(1, targ.shape[1]): 
            # passing enc_output to the decoder 
            predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output) 
 
            loss += loss_function(targ[:, t], predictions) 
 
            # using teacher forcing 
            dec_input = tf.expand_dims(targ[:, t], 1) 
 
    batch_loss = (loss / int(targ.shape[1])) 
 
    variables = encoder.trainable_variables + decoder.trainable_variables 
 
    gradients = tape.gradient(loss, variables) 
 
    optimizer.apply_gradients(zip(gradients, variables)) 
 
    return batch_loss 

Input: 

EPOCHS = 10 
 
for epoch in range(EPOCHS): 
    start = time.time() 
 
    enc_hidden = encoder.initialize_hidden_state() 
    total_loss = 0 
 
    for (batch, (inp, targ)) in enumerate(dataset.take(steps_per_epoch)): 
        batch_loss = train_step(inp, targ, enc_hidden) 
        total_loss += batch_loss 
 
        if batch % 100 == 0: 
            print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1, 
                                                         batch, 
                                                         batch_loss.numpy())) 
    # saving (checkpoint) the model every 2 epochs 
    if (epoch + 1) % 2 == 0: 
        checkpoint.save(file_prefix = checkpoint_prefix) 
 
    print('Epoch {} Loss {:.4f}'.format(epoch + 1, 
                                      total_loss / steps_per_epoch)) 
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    print('Time taken for 1 epoch {} sec\n'.format(time.time() - start)) 

Output: 

 

Step 17 Defining test and visualization functions 

Input: 

def evaluate(sentence): 
    attention_plot = np.zeros((max_length_targ, max_length_inp)) 
 
    sentence = preprocess_sentence(sentence) 
 
    inputs = [inp_lang.word_index[i] for i in sentence.split(' ')] 
    inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs], 
                                                         maxlen=max_length_inp, 
                                                         padding='post') 
    inputs = tf.convert_to_tensor(inputs) 
 
    result = '' 
 
    hidden = [tf.zeros((1, units))] 
    enc_out, enc_hidden = encoder(inputs, hidden) 
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    dec_hidden = enc_hidden 
    dec_input = tf.expand_dims([targ_lang.word_index['<start>']], 0) 
 
    for t in range(max_length_targ): 
        predictions, dec_hidden, attention_weights = decoder(dec_input, 
                                                             dec_hidden, 
                                                             enc_out) 
 
        # storing the attention weights to plot later on 
        attention_weights = tf.reshape(attention_weights, (-1, )) 
        attention_plot[t] = attention_weights.numpy() 
 
        predicted_id = tf.argmax(predictions[0]).numpy() 
 
        result += targ_lang.index_word[predicted_id] + ' ' 
 
        if targ_lang.index_word[predicted_id] == '<end>': 
            return result, sentence, attention_plot 
 
        # the predicted ID is fed back into the model 
        dec_input = tf.expand_dims([predicted_id], 0) 
 
    return result, sentence, attention_plot 
 
# function for plotting the attention weights 
def plot_attention(attention, sentence, predicted_sentence): 
    fig = plt.figure(figsize=(10,10)) 
    ax = fig.add_subplot(1, 1, 1) 
    ax.matshow(attention, cmap='viridis') 
 
    fontdict = {'fontsize': 14} 
 
    ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90) 
    ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict) 
 
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) 
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) 
 
    plt.show() 
 
def translate(sentence): 
    result, sentence, attention_plot = evaluate(sentence) 
 
    print('Input: %s' % (sentence)) 
    print('Predicted translation: {}'.format(result)) 
 
    attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))] 
    plot_attention(attention_plot, sentence.split(' '), result.split(' ')) 
 

Step 18 Loading a model offline 

Input: 

# restoring the latest checkpoint in checkpoint_dir 
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checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) 

Step 19 Single sentence translation test 

Input: 

translate(u'hace mucho frio aqui.') 

Output: 

 
Input: 

translate(u'esta es mi vida.') 
Output: 
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Input: 

translate(u'¿todavia estan en casa?') 
Output: 
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3.4 Experiment Summary 
This experiment describes how to use tensorflow to build a machine translation model 
based on the encoder-decoder architecture and the attention mechanism. This experiment 
helps trainees better understand the encoder-decoder architecture and principles of the 
attention mechanism, and improves programming practice. 
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Huawei Certificate System 
Huawei's certification system is the industry's only one that covers all ICT technical 

fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT 
technical architecture featuring cloud-pipe-device synergy. It provides three types of 
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT 
Vertical Certification. 

To meet ICT professionals' progressive requirements, Huawei offers three levels of 
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional 
(HCIP), and Huawei Certified ICT Expert (HCIE). 

HCIP-AI-EI Developer V2.0 certification is intended to cultivate professionals who 
have acquired basic theoretical knowledge about image processing, speech processing, 
and natural language processing and who are able to conduct development and 
innovation using Huawei enterprise AI solutions (such as HUAWEI CLOUD EI), general 
open-source frameworks, and ModelArts, a one-stop development platform for AI 
developers. 

The content of HCIP-AI-EI Developer V2.0 certification includes but is not limited to: 
neural network basics, image processing theory and applications, speech processing 
theory and applications, natural language processing theory and applications, 
ModelArts overview, and image processing, speech processing, natural language 
processing, and ModelArts platform development experiments. ModelArts is a one-stop 
development platform for AI developers. With data preprocessing, semi-automatic data 
labeling, large-scale distributed training, automatic modeling, and on-demand model 
deployment on devices, edges, and clouds, ModelArts helps AI developers build models 
quickly and manage the lifecycle of AI development. Compared with V1.0, HCIP-AI-EI 
Developer V2.0 adds the ModelArts overview and development experiments. In 
addition, some new EI cloud services are updated. 

HCIP-AI-EI Developer V2.0 certification proves that you have systematically 
understood and mastered neural network basics, image processing theory and 
applications, speech processing theory and applications, ModelArts overview, natural 
language processing theory and applications, image processing application 
development, speech processing application development, natural language processing 
application development, and ModelArts platform development. With this certification, 
you will acquire (1) the knowledge and skills for AI pre-sales technical support, AI 
after-sales technical support, AI product sales, and AI project management; (2) the 
ability to serve as an image processing developer, speech processing developer, or 
natural language processing developer. 
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About This Document 

Overview 

This document is intended for trainees who are to take the HCIP-AI certification 
examination and those who want to learn basic AI knowledge. After completing the 
experiments in this document, you will be able to understand the AI development 
lifecycle, and learn how to use ModelArts to develop AI applications, including data 
uploading, data labeling, deep learning algorithm development, model training, model 
deployment, and inference. ModelArts is a one-stop AI development platform that 
provides a wide range of AI development tools. ExeML enables you to quickly build AI 
applications without coding. Data Management provides data labeling and dataset 
version management functions. Built-in algorithms can lower the threshold for AI 
beginners to use the service. Custom deep learning algorithms help you program, train, 
and deploy AI algorithms. 

Description 
This document introduces the following experiments, involving image classification and 
object detection algorithms based on TensorFlow and MXNet deep learning engines, to 
help you master practical capabilities of building AI applications. 
 Experiment 1: ExeML — Flower Recognition Application 

 Experiment 2: ExeML — Yunbao Detection Application 

 Experiment 3: ExeML — Bank Deposit Application 

 Experiment 4: Data Management — Data Labeling for Flower Recognition 

 Experiment 5: Data Management — Data Labeling for Yunbao Detection 

 Experiment 6: Data Management — Uploading an MNIST Dataset to OBS 

 Experiment 7: Built-in Algorithms — Flower Recognition Application 

 Experiment 8: Built-in Algorithms — Yunbao Detection Application 

 Experiment 9: Custom Algorithms — Using Native TensorFlow for Handwritten Digit 
Recognition 

 Experiment 10: Custom Algorithms — Using MoXing-TensorFlow for Flower 
Recognition 

 Experiment 11: Custom Algorithms — Using Native MXNet for Handwritten Digit 
Recognition 

 Experiment 12: Custom Algorithms — Using MoXing-MXNet for Flower Recognition 
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Background Knowledge Required 
This course is for Huawei's development certification. To better understand this course, 
familiarize/equip yourself with the following: 
 Basic language editing capabilities 
 Data structure basics 
 Python programming basics 
 Basic deep learning concepts 
 Basic TensorFlow and MXNet concepts 

Experiment Environment Overview 
ModelArts provides a cloud-based development environment. You do not need to install 
one. 

Experiment Data Overview  
Download the datasets and source code used in this document from https://huawei-ai-
certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-ModelArts%20V2.1.rar 
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1 ExeML 

1.1 About This Lab 
ExeML, a service provided by ModelArts, is the process of automating model design, 
parameter tuning and training, and model compression and deployment with the labeled 
data. The process is free of coding and does not require your experience in model 
development, enabling you to start from scratch. This lab guides you through image 
classification, object detection, and predictive analytics scenarios. 

Image classification is based on image content labeling. An image classification model 
can predict a label corresponding to an image, and is applicable to scenarios in which 
image classes are obvious. In addition to predicting class labels in images, an object 
detection model can also predict objects' location information, and is suitable for 
complex image detection scenarios. A predictive analytics model is used to classify 
structured data or predict values, which can be used in structured data predictive analysis 
scenarios. 

1.2 Objectives 
This lab uses three specific examples to help you quickly create image classification, 
object detection, and predictive analytics models. The flower recognition experiment 
recognizes flower classes in images. The Yunbao detection experiment identifies Yunbaos' 
locations and actual classes in images. The bank deposit prediction experiment classifies 
or predicts values of structured data. After doing these three experiments, you can 
quickly understand the scenarios and usage of image classification, object detection, and 
predictive analytics models. 

1.3 Experiment Environment Overview 
If you are a first-time ModelArts user, you need to add an access key to authorize 
ModelArts jobs to access Object Storage Service (OBS) on HUAWEI CLOUD. You cannot 
create any jobs without an access key. The procedure is as follows: 
 Generating an access key: On the management console, move your cursor over your 

username, and choose Basic Information > Manage > My Credentials > Access Keys 
to create an access key. After the access key is created, the AK/SK file will be 
downloaded to your local computer. 
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 Configuring global settings for ModelArts: Go to the Settings page of ModelArts, and 
enter the AK and SK information recorded in the downloaded AK/SK file to authorize 
ModelArts modules to access OBS. 

 
Figure 1-1 ModelArts management console 

1.4 Procedure 

1.4.1 Flower Recognition Application 
The ExeML page consists of two parts. The upper part lists the supported ExeML project 

types. You can click Create Project to create an ExeML project. The created ExeML 
projects are listed in the lower part of the page. You can filter the projects by type or 

search for a project by entering its name in the search box and clicking . 

The procedure for using ExeML is as follows: 
 Creating a project: To use ModelArts ExeML, create an ExeML project first. 
 Labeling data: Upload images and label them by class. 
 Training a model: After data labeling is completed, you can start model training. 
 Deploying a service and performing prediction: Deploy the trained model as a service 

and perform online prediction. 
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1.4.2 Creating a Project 
Step 1 Create a project. 

On the ExeML page, click Create Project in Image Classification. The Create Image 
Classification Project page is displayed. See Figure 1-2. 

 
Figure 1-2 Creating a project 

Parameters: 

Billing Mode: Pay-per-use by default 

Name: The value can be modified as required. 

Input Dataset Path: Select an OBS path for storing the dataset to be trained. Create an 
empty folder on OBS first (Click the bucket name to enter the bucket. Then, click Create 
Folder, enter a folder name, and click OK). Select the newly created OBS folder as the 
training data path. Alternatively, you can import required data to OBS in advance. In this 
example, the data is uploaded to the /modelarts-demo/auto-learning/image-class 
folder. For details about how to upload data, see https://support.huaweicloud.com/en-
us/modelarts_faq/modelarts_05_0013.html. To obtain the source data, visit modelarts-
datasets-and-source-code/ExeML/flower-recognition-application/training-dataset. 

Description: The value can be modified as required. 

Step 2 Confirm the project creation. 

Click Create Project. The ExeML project is created. 

  

https://support.huaweicloud.com/en-us/modelarts_faq/modelarts_05_0013.html
https://support.huaweicloud.com/en-us/modelarts_faq/modelarts_05_0013.html
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1.4.2.2 Labeling Data 

Step 1 Upload images. 

After an ExeML project is created, the Label Data page is automatically displayed. Click 
Add Image to add images in batches. The dataset path is modelarts-datasets-and-
source-code/ExeML/flower-recognition-application/training-dataset. If the images 
have been uploaded to OBS, click Synchronize Data Source to synchronize the images to 
ModelArts. See Figure 1-3. 

 
Figure 1-3 Data labeling page of an image classification project 

 
 The images to be trained must be classified into at least two classes, and each class 

must contain at least five images. That is, at least two labels are available and the 
number of images for each label is not fewer than five. 

 You can add multiple labels to an image. 

Step 2 Label the images. 

In area 1, click Unlabeled, and select one or more images to be labeled in sequence, or 
select Select Current Page in the upper right corner to select all images on the current 
page. In area 2, input a label or select an existing label and press Enter to add the label 
to the images. Then, click OK. The selected images are labeled. See Figure 1-4. 

 
Figure 1-4 Image labeling for image classification 

Step 3 Delete or modify a label in one image. 
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Click Labeled in area 1, and then click an image. To modify a label, click  on the right 
of the label in area 2, enter a new label on the displayed dialog box, and click . To 

delete a label, click  on the right of the label in area 2. See Figure 1-5. 

 
Figure 1-5 Deleting/Modifying a label in one image 

Step 4 Delete or modify a label in multiple images. 

In area 2, click the label to be modified or deleted, and click  on the right of the 

label to rename it, or click  to delete it from multiple images. In the dialog box that 
is displayed, select Delete label or Delete label and images that only contain this 

label. See Figure 1-6. 

 
Figure 1-6 Deleting/Modifying a label in multiple images 

1.4.2.3 Training a Model 
After labeling the images, you can train an image classification model. Set the training 
parameters first and then start automatic training of the model. Images to be trained 
must be classified into at least two classes, and each class must contain at least five 
images. Therefore, before training, ensure that the labeled images meet the 
requirements. Otherwise, the Train button is unavailable. 

Step 1 Set related parameters. 

You can retain the default values for the parameters, or modify Max Training Duration 
(h) and enable Advanced Settings to set the inference duration. Figure 1-7 shows the 
training settings. 
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Figure 1-7 Training settings 

Parameters: 

Max Training Duration (h): If the training process is not completed within the 
maximum training duration, it is forcibly stopped. You are advised to enter a larger value 
to prevent forcible stop during training. 

Max Inference Duration (ms): The time required for inferring a single image is 
proportional to the complexity of the model. Generally, the shorter the inference time, 
the simpler the selected model and the faster the training speed. However, the precision 
may be affected. 

Step 2 Train a model. 

After setting the parameters, click Train. After training is completed, you can view the 
training result on the Train Model tab page. 

  

1.4.2.4 Deploying a Service and Performing Prediction 

Step 1 Deploy the model as a service. 

After the model training is completed, you can deploy a version with the ideal precision 
and in the Successful status as a service. To do so, click Deploy in the Version Manager 
pane of the Train Model tab page. See Figure 1-8. After the deployment is successful, 
you can choose Service Deployment > Real-Time Services to view the deployed service.  
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Figure 1-8 Deploying the model as a service 

 

Step 2 Test the service. 

After the model is deployed as a service, you can upload an image to test the service. The 
path of the test data is modelarts-datasets-and-source-code/ExeML/flower-
recognition-application/test-data/daisy.jpg.  

On the Deploy Service tab page, click the Upload button to select the test image. After 
the image is uploaded successfully, click Predict. The prediction result is displayed in the 
right pane. See Figure 1-9. Five classes of labels are added during data labeling: tulip, 
daisy, sunflower, rose, and dandelion. The test image contains a daisy. In the prediction 
result, "daisy" gets the highest score, that is, the classification result is "daisy". 

 
Figure 1-9 Service testing 

1.4.3 Yunbao Detection Application 
The ExeML page consists of two parts. The upper part lists the supported ExeML project 

types. You can click Create Project to create an ExeML project. The created ExeML 
projects are listed in the lower part of the page. You can filter the projects by type or 

search for a project by entering its name in the search box and clicking . 
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The procedure for using ExeML is as follows: 
 Creating a project: To use ModelArts ExeML, create an ExeML project first. 
 Labeling data: Upload images and label them by class. 
 Training a model: After data labeling is completed, you can start model training. 
 Deploying a service and performing prediction: Deploy the trained model as a service 

and perform online prediction. 

1.4.3.1 Creating a Project 

Step 1 Create a project. 

On the ExeML page, click Create Project in Object Detection. The Create Object 
Detection Project page is displayed. See Figure 1-10. 

 
Figure 1-10 Creating a project. 

Parameters: 

Billing Mode: Pay-per-use by default 

Name: The value can be modified as required. 

Training Data: Create an empty folder on OBS and specify the OBS folder path as the 
value of this parameter. In this example, /modelarts-demo/auto-learning/object-
detection is used. Alternatively, you can directly import data to OBS in advance. For 
details, see 2.3.3 "Uploading an MNIST Dataset to OBS." 

Description: The value can be modified as required. 

Step 2 Confirm the project creation. 

Click Create Project. The ExeML project is created. 

 

1.4.3.2 Labeling Data 

Step 1 Upload images. 
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After an ExeML project is created, the Label Data page is automatically displayed. Click 
Add Image to add images in batches. Note that the total size of the images uploaded in 
one attempt cannot exceed 8 MB. The dataset path is modelarts-datasets-and-source-
code/ExeML/yunbao-detection-application/training-dataset. The dataset contains 
images of Yunbao, the mascot of HUAWEI CLOUD. If the images have been uploaded to 
OBS, click Synchronize Data Source to synchronize the images to ModelArts. See Figure 
1-11. 

 
Figure 1-11 Data labeling page of an object detection project 

 
 Each class of images to be trained must contain at least five images. That is, the 

number of images for each label is not fewer than five. 
 You can add multiple labels to an image. 

Step 2 Label the images. 

Enter the Unlabeled tab page and click an image to access its labeling page. See Figure 
1-12. On the labeling page, draw a labeling box to frame out the target object. Ensure 
that the box does not contain too much background information. Then, select a label. If 
no label is available, input one and press Enter.  

In this example, use the mouse to draw a box to frame the Yunbao and input yunbao as 
the label name. See Figure 1-13. 
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Figure 1-12 Image labeling for object detection 

 
Figure 1-13 Image labeling page 

Step 3 Delete or modify a label in one image. 

Click the Labeled tab and click the target image to enter its labeling page. Then, you can 
delete or modify a label through either of the following methods: 
 Method 1: Move the cursor to the labeling box, right-click, and choose Modify from 

the shortcut menu to modify the label or choose Delete to delete the label. 
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Figure 1-14 Deleting/Modifying a label in one image 

 Method 2: Click the  or  button on the right of the image to modify or 
delete its label. 

 
Figure 1-15 Deleting a label and adding a new label in one image 

Step 4 Delete or modify a label in multiple images. 

In area 2 of the Labeled tab page, click  on the right of the target label to rename 

it, or click  to delete it from multiple images. In the dialog box that is displayed, 
select Delete label or Delete label and images that only contain this label. See Figure 

1-16. 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 18 
 

 

 
Figure 1-16 Deleting/Modifying a label in multiple images 

1.4.3.3 Training a Model 
After labeling the images, you can train an object detection model. Set the training 
parameters first and then start automatic training of the model. Each class of images to 
be trained must contain at least five images. Therefore, before training, ensure that the 
labeled images meet the requirements. Otherwise, the Train button is unavailable. 

Step 1 Set the parameters. 

You can retain the default values for the parameters, or modify Max Training Duration 
(h) and enable Advanced Settings to set the inference duration. Figure 1-17 shows the 
training settings. 

 
Figure 1-17 Training settings 

Parameters: 

Max Training Duration (h): If the training process is not completed within the 
maximum training duration, it is forcibly stopped. You are advised to enter a larger value 
to prevent forcible stop during training. 
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Max Inference Duration (ms): The time required for inferring a single image is 
proportional to the complexity of the model. Generally, the shorter the inference time, 
the simpler the selected model and the faster the training speed. However, the precision 
may be affected. 

Step 2 Train a model. 

After setting the parameters, click Train. After training is completed, you can view the 
training result on the Train Model tab page. 

  

1.4.3.4 Deploying a Service and Performing Prediction 

Step 1 Deploying the model as a service 

After the model training is completed, you can deploy a version with the ideal precision 
and in the Successful status as a service. To do so, click Deploy in the Version Manager 
pane of the Train Model tab page. See Figure 1-18. After the deployment is successful, 
you can choose Service Deployment > Real-Time Services to view the deployed service.  

 
Figure 1-18 Deploying the model as a service 

Step 2 Test the service. 

After the model is deployed, you can upload an image to test the service. The path of the 
test data is modelarts-datasets-and-source-code/ExeML/yunbao-detection-
application/test-data. 

On the Deploy Service tab page, click the Upload button to select the test image. After 
the image is uploaded successfully, click Predict. The prediction result is displayed in the 
right pane. See the following figures. In the prediction result, Yunbaos are framed out 
with boxes and labeled with yunbao, and the related probabilities and coordinate values 
are displayed in the right pane. 
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Figure 1-19 Uploading a test image 

 
Figure 1-20 Service testing 

1.4.4 Bank Deposit Prediction Application 
This experiment describes how to use ModelArts to predict the bank deposit. 

Banks often predict whether customers would be interested in a time deposit based on 
their characteristics, including the age, work type, marital status, education background, 
housing loan, and personal loan. 

Now, you can use the ExeML function of HUAWEI CLOUD ModelArts to easily predict 
whether a customer would be interested in the time deposit. The procedure consists of 
three parts: 
 Preparing data: Download a dataset and upload it to OBS. 
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 Training a model: Use ModelArts to create a project for model training. 
 Deploying a service and performing prediction: Deploy the trained model as a service 

and test the prediction function. 

1.4.4.1 Preparing Data 
To upload the training dataset to an OBS bucket, perform the following steps: 

Step 1 Find the train.csv file (training dataset) in the modelarts-datasets-and-source-
code/data-management/bank-deposit-prediction-application/dataset directory. 

Step 2 Browse and understand the training dataset. 

Table 1-1 Parameters and meanings 

Parameter Meaning Type Description 

attr_1 Age Int Age of the customer 

attr_2 Occupation String Occupation of the customer 

attr_3 Marital status String Marital status of the customer 

attr_4 Education status String Education status of the customer 

attr_5 Real estate String Real estate of the customer 

attr_6 Loan String Loan of the customer 

attr_7 Deposit String Deposit of the customer 

 

Table 1-2 Sample data of the dataset 

attr_1 attr_2 attr_3 attr_4 attr_5 attr_6 attr_7 

58 management married tertiary yes no no 

44 technician single secondary yes no no 

33 entrepreneur married secondary yes yes no 

47 blue-collar married unknown yes no no 

33 unknown single unknown no no no 

35 management married tertiary yes no no 

 

Step 3 Upload the training dataset file from your local computer to the OBS bucket. For 
details about how to upload a file to OBS, see 
https://support.huaweicloud.com/qs-obs/obs_qs_0001.html. 

  

https://support.huaweicloud.com/qs-obs/obs_qs_0001.html
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1.4.4.2 Training a Model 
To create a project for model training using ModelArts, perform the following steps: 

Step 1 Enter the ModelArts management console, and choose ExeML > Predictive 
Analytics > Create Project to create a predictive analytics project. When creating 
the project, select the training dataset uploaded to OBS in previous steps. 

 
Figure 1-21 Creating a predictive analytics project 

 
Figure 1-22 Selecting the data path 

Step 2 Click the project name to enter its Label Data page, preview the data and select 
the training objective (specified by Label Column). The training objective here is 
to determine whether the customer will apply for a deposit (that is, attr_7). Then, 
set Label Column Data Type to Discrete value. Click Training. 
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Figure 1-23 Training job parameters 

Step 3 Wait until the training is completed and view the training result. You can check 
the training effect of the model based on the evaluation result. 

 
Figure 1-24 Model training management page 

1.4.4.3 Deploying a Service and Performing Prediction 
After the training job is completed, you can deploy the trained model as a prediction 
service as follows. 

Step 1 On the Train Model tab page, click Deploy in the upper left corner. 

Step 2 On the Deploy Service page, test the prediction service. 

Step 3 Use the following code for prediction. You only need to modify the parameters 
under the req_data module. 

{ 
  "meta": { 
    "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e" 
  }, 
  "data": { 
    "count": 1, 
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    "req_data": [ 
      { 
        "attr_1": "58", 
        "attr_2": "management", 
        "attr_3": "married", 
        "attr_4": "tertiary", 

        "attr_5": "yes", 
        "attr_6": "no", 
        "attr_7": "no" 
      } 
    ] 
  } 
} 

 
Figure 1-25 Prediction test result 
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2 Data Management 

2.1 About This Lab 
The Data Management module of ModelArts allows you to upload data, label data, 
create datasets, and manage data versions. This section mainly describes these functions. 
The dataset files uploaded in this section will be used for subsequent custom algorithm 
experiments. Labeling jobs completed in Data Management can also be used by training 
jobs, but labeling jobs created in ExeML can be used only by ExeML. Data Management 
and ExeML use the same labeling techniques. 

2.2 Objectives 
Learn how to use OBS Browser to upload data. 

Learn how to create datasets. 

2.3 Procedure 

2.3.1 Data Labeling for Flower Recognition 
2.3.1.1 Creating dataset 

Step 1 Learn the layout of the Datasets page. 

The Datasets page lists all dataset. On this page, you can click Create Dataset to create 
a dataset, or enter a dataset name in the search box in the upper right corner of the 

dataset list and click  to search for a dataset. See Figure 2-1. 
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Figure 2-1 Dataset page 

Parameters: 

Name: name of a data labeling job. After you click the name, the job details page is 
displayed. 

Labeling Type: type of a data labeling job. Currently, labeling types include image 
classification, object detection, sound classification, text classification, and text labeling. 

Labeling Progress: labeling progress of a data labeling job, displaying also the total 
number of images and the number of labeled images. 

Created: time when a data labeling job was created. 

Description: brief description of a data labeling job. 

Operation: operations you can perform on a data labeling job, including: 
 Publish: Publish dataset versions. 
 Deploy Model: Deploy the dataset with algorithm. 

Step 2 Create a dataset. 

On OBS, create an empty folder (obs://hcip2-modelarts/data-manage/data-labeling-for-
flower-recognition/dataset/) to store images to be labeled, and create another empty 
folder (obs://hcip2-modelarts/output/data-manage/ip-flower/) to store the labeling 
result. 

On ModelArts, click Create Dataset in the upper left corner of the Datasets page. Set 
required parameters. Then, click Create. See Figure 2-2. 
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Figure 2-2 Parameter settings 

 

After the job is created, click the job name to enter its details page.  

 
Figure 2-3 Datasets page 

 
Figure 2-4 Datasets page 

The images have been uploaded to OBS, click  to synchronize the images to 
ModelArts. For details, see Step 1 in section 1.4.2.2 "Labeling Data." 

2.3.1.2 Labeling Images 
For details, see Step 2 in section 1.4.2.2 "Labeling Data." 

2.3.1.3 Deleting or Modifying a Label in One Image 
For details, see Step 3 in section 1.4.2.2 "Labeling Data." 

2.3.1.4 Deleting or Modifying a Label in Multiple Images 
For details, see Step 4 in section 1.4.2.2 "Labeling Data." 

2.3.1.5 Publish a Dataset 
After the labeling is complete, return to the Dataset Overview page. 
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Figure 2-5 Labeled 

Click Publish on the labeling page. The dataset is automatically generated. See the 
following figure. The published dataset can be directly used in training jobs. 

 
Figure 2-6 Publish dataset 

2.3.1.6 Managing Versioning 
Choose Datasets > Version Manager. On the page that is displayed, you can view 
the version updates of a dataset. The version name is automatically generated in the 
form of v001 After a dataset is created successfully, a temporary version is 
automatically generated and named in the form of v001. To switch the directory, move 
the cursor to the target version name, and then click Set to current directory to set 
the version to the current directory. The Add File and Delete File operations in the 
dataset directory are automatically saved to the temporary version. You can view the 
number of added and deleted files on the Version Manager tab page. 
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Figure 2-7 Publish new version 

 
Figure 2-8 Version managment 

2.3.2 Data Labeling for Yunbao Detection 
Step 1 Create a dataset. 

Log in to ModelArts and click Create Dataset. The Create Dataset page is displayed, as 
shown in the following figure. After setting the parameters, click Create. 
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Figure 2-9 Creating dataset 

Step 2 Label the data. 

After the data labeling job is created, return to the job list and click the job name to 
enter the labeling page. Upload the image dataset from modelarts-datasets-and-
source-code/data-management/data-labeling-for-yunbao-detection to this page and 
label the images. The data is synchronized to the OBS path of the data labeling job by 
default. Alternatively, you can import the images to OBS and click Synchronize Data 
Source to synchronize them to ModelArts for labeling. 
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Figure 2-10 Data labeling page of an object detection project 

Click the Unlabeled tab in area 1, and then click an image in area 2. Then, frame out the 
object in the image with a labeling box. Ensure that the box does not contain too much 
background information. Input a label and press Enter. See Figure 2-11. 

 
Figure 2-11 Image labeling for object detection 

Step 3 Delete or modify a label in one image. 

In area 1, click the Labeled tab and click the target image to enter its labeling page. 
Then, you can delete or modify a label through either of the following methods: 

Method 1: Move the cursor to the labeling box, right-click, and choose Delete from the 
shortcut menu to delete the label, or choose Modify, enter a new label name, and press 
Enter. 

 
Figure 2-12 Deleting/Modifying a label in one image 

Method 2: Click the  or  button on the right of the image to modify or delete its 
label. 
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Figure 2-13 Deleting a label and adding a new label in one image 

Step 4 Delete or modify a label in multiple images. 

On the Labeled tab page, click  on the right of the target label to rename it, or click 

 to delete it from multiple images. In the dialog box that is displayed, select Delete 
label or Delete label and images that only contain this label. See Figure 2-14. 

 
Figure 2-14 Deleting/Modifying a label in multiple images 

Step 5 Publish a dataset. 

After data labeling is complete, click Back to Dataset Overview on the labeling page. 
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Figure 2-15 Labeled 

 
Figure 2-16 Publish a dataset 

Click OK to publish. 
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Figure 2-17 Publish 

Step 6 Manage the dataset. 

After creating a dataset, you can manage it on ModelArts. 

 
Figure 2-18 Datasets page 

Area 1: dataset list. All operations performed on datasets are displayed in this area. For 
example: 

-- Release: Click Release to release the new dataset. 

-- Online: Deploy the dataset as an online task. 

-- Delete: Move the cursor to the dataset and click Delete. 

Area 2: Query information in the dataset list of the current year. 

Area 3: Creating a datasetManage versioning. 

Step 7 Version management 

For details, see section 2.3.1.6. 
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2.3.3 Uploading an MNIST Dataset to OBS 
Prepare an MNIST dataset, and store it in the modelarts-datasets-and-source-
code/data-management/uploading-a-mnist-dataset-to-obs directory. Then, upload the 
prepared dataset to OBS. This experiment describes how to use OBS Browser to upload 
data to OBS in batches. 

Step 1 Obtain the AK/SK. For details, see section 1.3 "Experiment Environment Overview." 

Step 2 Download OBS Browser at https://storage.huaweicloud.com/obs/?region=cn-
north-1#/obs/buckets. Select a proper version based on your operating system. 
See Figure 2-19. 

 
Figure 2-19 Downloading OBS Browser 

Decompress the downloaded package and double-click obs.exe to open OBS Browser. 

 
Figure 2-20 Login accounts 

Step 3 Upload files in the MNIST dataset from the modelarts-datasets-and-source-
code/data-management/uploading-a-mnist-dataset-to-obs directory to OBS in 
batches. Wait until the transmission icon in the upper right corner indicates that 
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the uploading is finished. The uploaded dataset can be used in the handwritten 
digit recognition experiments in sections 4.4.1 and 4.4.3 "Using Native MXNet for 
Handwritten Digit Recognition." 

 
Figure 2-21 File upload 

2.3.4 Uploading of flower classification data set 
This dataset will be used for experiments 4.4.2 and 4.4.4 in Chapter 4. 

The path of the data set is "ModelArts Experimental Data Set and source code/data 
management/Flower classification data set upload/data set", under which there are 
multiple folders with a large number of pictures in each folder.OBS data upload method 
refer to section 2.3.3.The OBS interface after uploading is as follows: 
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Figure 2-22 File upload 

 

 

 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 38 
 

 

3 Built-in Algorithms for Deep Learning 

3.1 About This Lab 
ModelArts provides a series of built-in models covering image classification and object 
detection, such as the classic ResNet model and lightweight MobileNet model. Built-in 
algorithms can greatly shorten the training time on a new dataset and achieve higher 
precision. Training with built-in algorithms is a common method of deep learning. 

3.2 Objectives 
This lab describes how to use built-in algorithms to train datasets. The process is free of 
coding, and you only need to prepare datasets that meet specified requirements. 

3.3 Procedure 

3.3.1 Flower Recognition Application 
This section describes how to use a built-in model on ModelArts to build a flower image 
classification application. The procedure consists of four parts: 

1. Preparing data: On the Data Management page of ModelArts, label the images and 
create a flowers dataset. 

2. Training a model: Load a built-in model to train the flowers dataset to generate a new 
model. 

3. Managing a model: Import the new model to manage it. 

4. Deploying a model: Deploy the model as a real-time service, batch service, or edge 
service. 

 
If you use ModelArts for the first time, add an access key before using it. For details, see 
section 1.3 "Experiment Environment Overview." 

3.3.1.1 Preparing Data 
The flower images have been labeled and a dataset version has been created in section 
2.3.1 "Data Labeling for Flower Recognition." This experiment uses the labeled flowers 
dataset. 
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3.3.1.2 Training a Model 
On the Training Jobs page of ModelArts, you can create training jobs, manage job 
parameters, and perform operations related to visualization jobs. 

The Training Jobs page lists all training jobs you created. See Figure 3-1. You can create 
training jobs, filter the training jobs by status, or search for a training job by entering the 
job name in the search box. 

The following uses the ResNet_v1_50 built-in model as an example to describe how to 
create a training job and generate a new model. 

 
Figure 3-1 Training Jobs page 

Step 2 Create a training job. 

On the ModelArts management console, choose Training Management > Training Jobs, 
and click Create. The Create Training Job page is displayed. 

Step 3 Set required parameters. 

On the Create Training Job page, set required parameters. Then, click Next. After 
confirming that the configurations are correct, click Submit. 
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Figure 3-2 Parameter settings 

Parameters: 

Billing Mode: Pay-per-use by default. 

Name: name of a training job. The value can be modified as required. 

Version: version of a training job. The version number is automatically generated. 

Description: brief description of a training job. 

Data Source: data required for training. The options are as follows: 

Dataset: Select a dataset and its version. 

Data path: Select the training data from an OBS bucket. 

Algorithm Source: The options are as follows: 

Built-in: Select a built-in ModelArts algorithm. 

Frequently-used: Select an AI engine and its version, the code directory, and the boot 
file. 

Training Output Path: This parameter is mandatory. Select the training result storage 
location to store the output model file. (You need to create an empty OBS folder. In this 
example, the output path is /modelarts-demo/builtin-algorithm/output.) 

Job Log Path: Select a path for storing log files generated during job running. 
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Resource Pool: You must select a resource pool (including CPU and GPU resource pools) 
for the training job. GPU training is fast while CPU training is slow. GPU/P100 is 
recommended.  

Compute Nodes: Specify the number of compute nodes. (One node is used for 
standalone training, while multiple nodes are used for distributed training. Multi-node 
distributed training can accelerate the training process.) 

Step 4 View the training job. 

In the training job list, click the job name to switch to the training job details page. Figure 
3-3 shows the Version Manager tab page. On the Traceback Diagrams tab page, you 
can view the traceback diagrams of data, training, models, and web services. 

 
Figure 3-3 Training job details page 

Area 1: Displays the details of the current job. 

Area 2: Create visual jobs and other operations. 

Area 3: Some operations on the current version. 

Step 5 Create a visualization job. 

After a training job is created, you can go to its details page to view its log. The log 
records the current number and the total number of training steps, which can be used as 
a reference for the training progress. However, if the precision is not significantly 
improved in a training phase, the training job automatically stops. See Figure 3-4. The log 
shows that the job will stop after 125 training steps. The current log record shows that 10 
training steps have been performed (a training log record is printed every 10 steps by 
default). If the precision does not increase, the training stops before the number of steps 
reaches 125. 
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Figure 3-4 Training job log 

After the training job is completed (its Status column on the training job page displays 
Successful), or it has been written to the event file, choose Training Jobs > Version 
Manager, click Create Visualization Job in the upper right corner, and enter basic 
information. See Figure 3-5. You can enter any name. The log path is automatically set to 
the model storage path, that is, the Training Output Path parameter in the training job. 
Click Next. After confirming that the configurations are correct, click Submit. You can 
return to the Visualization Jobs page and click the job name to view its details. You need 
to manually stop the visualization job after using it to avoid additional charges. 

 
Figure 3-5 Creating a visualization job 

3.3.1.3 Managing a Model 

Step 1 Create a model. 

Click the training job name to go to its details page. On the Version Manager tab page, 
click Create Model in the upper right corner, enter the model name and version, and 
click Next. The Models page is displayed. When the model status becomes Normal, the 
model is successfully created. 

Alternatively, click Import in the upper left corner of the Models page. The Import page 
is displayed. Set required parameters and click Next to import a model. See Figure 3-6. 
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Figure 3-6 Importing a model 

Parameters: 

Name: name of the model. 

Version: version of the model to be created. 

Description: brief description of the model. 

Meta Model Source: You can import a meta model from a training job or OBS. 

Training job: Select a meta model from a ModelArts training job. 

OBS: Import a meta model from OBS and select the meta model storage path and AI 
engine. The meta model imported from OBS must meet the model package 
specifications. 

The following describes the Model Management pages: 

 
Figure 3-7 Model management pages 

Area 1: 
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Model list, which lists the models created by users, and the following actions can be 
taken: 

Delete: After selecting the model, click "" on the right side of the model to delete the 
currently selected model. 

Create a new version: Adjust parameters to generate a new version of the model. 

Area 2: 

Listed all the current model model information, different access channels, management 
model.Import and view the relevant models. 

  

3.3.1.4 Deploying a Model 
After a training job is completed and a model is generated (the model status is Normal 
after being imported), you can deploy the model on the Service Deployment page. You 
can also deploy a model imported from OBS. 

Step 1 Click Deploy in the upper left corner of the Real-Time Services page. On the 
displayed page, set required parameters. See Figure 3-8. Then, click Next. After 
confirming that the parameter settings are correct, click Submit to deploy the 
real-time service. 

 
Figure 3-8 Real-time service 

Parameters: 

Name: name of the real-time service. 

Description: brief description of the real-time service. 

Billing Mode: Pay-per-use 

Models: Select a model and a version. 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 45 
 

 

Traffic Ratio: Set the traffic proportion of the node. If you deploy only one version of a 
model, set this parameter to 100%. If you select multiple versions for gray release, 
ensure that the sum of the traffic ratios of multiple versions is 100%. 

Instance Flavor: Values include 2 vCPUs | 8 GiB and 2 vCPUs | 8 GiB GPU: 1 x P4 and so 
on. 

Instance Count: Select 1 or 2. 

Environment Variable: Set environment variables. 

Step 2 Click the service name to go to its details page. When its status becomes Running, 
you can debug the code or add an image to test the service. For details about the 
test operations, see Step 2 in section 1.4.2.4 "Deploying a Service and Performing 
Prediction." The test image is stored in modelarts-datasets-and-source-code/data-
management/built-in-deep-learning-algorithms/flower-recognition-
application/test-data. You need to manually stop the real-time service after using 
it to avoid additional charges. 

  

3.3.2 Yunbao Detection Application 
This section describes how to use a built-in model on ModelArts to build a Yunbao 
detection application. The procedure consists of four parts: 

1. Preparing data: On the Data Management page of ModelArts, label the images and 
create a Yunbao dataset. 

2. Training a model: Load a built-in model to train the Yunbao dataset to generate a new 
model. 

3. Deploying a model: Deploy the obtained model as a real-time prediction service. 

4. Initiating a prediction request: Initiate a prediction request and obtain the prediction 
result. 

 
If you use ModelArts for the first time, add an access key before using it. For details, see 
section 1.3 "Experiment Environment Overview." 

3.3.2.1 Preparing Data 
The data has been prepared in section 2.3.2 "Data Labeling for Yunbao Detection." 

3.3.2.2 Training a Model 
On the Training Jobs page of ModelArts, you can create training jobs, manage job 
parameters, and perform operations related to visualization jobs. 

The Training Jobs page lists all training jobs you created. See Figure 3-1. You can create 
training jobs, filter the training jobs by status, or search for a training job by entering the 
job name in the search box. 

The following uses the Faster_RCNN_ResNet_v1_50 built-in model as an example to 
describe how to create a training job and generate a new model. 

Step 1 Create a training job. 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 46 
 

 

On the ModelArts management console, choose Training Management > Training Jobs, 
and click Create. The Create Training Job page is displayed. 

Step 2 Set required parameters. 

On the Create Training Job page, set required parameters. See Figure 3-2. Then, click 
Next. After confirming that the configurations are correct, click Submit. 

Parameters: 

Billing Mode: Pay-per-use by default 

Name: name of a training job. The value can be modified as required. 

Version: version of a training job. The version number is automatically generated. 

Description: brief description of a training job. 

Data Source: data required for training. The options are as follows: 

Dataset: Select a dataset and its version. 

Data path: Select the training data from an OBS bucket. 

Algorithm Source: The options are as follows: 

Built-in: Select a built-in ModelArts algorithm. 

Frequently-used: Select an AI engine and its version, the code directory, and the boot 
file. 

Training Output Path: Select a path for storing the training result and save the model 
file. The path must be empty to ensure normal model training. See Figure 3-9. 

 
Figure 3-9 Training output 

Job Log Path: Select a path for storing log files generated during job running. This 
parameter is optional. See Figure 3-10. 

 
Figure 3-10 Job log path 

Resource Pool: Select a resource pool for the training job. In this example, select the GPU 
resources. See Figure 3-11. 

 
Figure 3-11 Resource pool 

Compute Nodes: Specify the number of compute nodes. Set the value to 1 here. 
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The training takes about 10 minutes if five epochs are running. If the precision is 
insufficient, increase the number of epochs. 

Step 3 View the training job. 

In the training job list, click the job name to enter the training job details page.See Step 3 
of 3.3.1.2 for details 

Step 4 Create a visualization job. 

See Step 4 of 3.3.1.2 for details. 

Step 5 Create a model. 

See Section 3.3.1.3 for details 

Step 6 Deploy a real-time service. 

When the model status becomes Normal, click Real-Time Services under Deploy 
to deploy the model as a real-time service. See Figure 3-12. 

 
Figure 3-12 Service deployment 

Area 1 displays the version number of the created model, and area 2 displays the 
specifications of the selected inference and prediction node. By default, a single CPU 
node is selected. 
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Figure 3-13 Deployment procedure 

After the real-time service is deployed and runs properly, you can perform prediction. 
After the experiment, you need to manually stop it to stop the billing. 

Step 7 Verify the service online. 

Choose Service Deployment > Real-Time Services, and click the deployed real-time 
service to enter its page. 

 
Figure 3-14 Entering the service 

Click the Prediction tab, and click Upload to upload an image for predictive analysis. The 
path of the test image is in the modelarts-datasets-and-source-code/data-
management/built-in-deep-learning-algorithms/yunbao-detection-application/test-data. 

 
Figure 3-15 Uploading an image 

The following lists the test result: 

 
Figure 3-16 Test result 
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4 Custom Basic Algorithms for Deep 
Learning 

4.1 About This Lab 
This section describes how to use custom algorithms to train and deploy models for real-
time prediction on the ModelArts platform. Custom algorithms include algorithms 
developed based on native TensorFlow and MXNet APIs and algorithms developed based 
on the self-developed MoXing framework. MoXing can effectively lower the threshold for 
using deep learning engines, such as TensorFlow and MXNet, and improve performance 
of distributed training. 

4.2 Objectives 
Upon completion of this task, you will be able to:  
 Modify native code to adapt to model training, deployment, and prediction on 

ModelArts. 
 Set up a MoXing framework and use MoXing distributed training capabilities to 

accelerate training. 

4.3 Using MoXing 
MoXing is a network model development API provided by HUAWEI CLOUD ModelArts. 
Compared with native APIs such as TensorFlow and MXNet, MoXing APIs make model 
code compilation easier and can automatically obtain high-performance distributed 
execution capabilities. 

The MoXing module includes the following modules, as shown in Figure 4-1. 
 Common module framework (import moxing as mox) 
 TensorFlow module (import moxing.tensorflow as mox) 
 MXNet module (import moxing.mxnet as mox) 
 PyTorch module (import moxing.pytorch as mox) 

(When you import engine-related modules, common modules will also be imported.) 
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Figure 4-1 MoXing module 

4.3.2 MoXing – Framework Module 
You can use the mox.file module in MoXing to call APIs to directly access OBS. All 
environments in ModelArts have been configured. 

Example: 

import moxing as mox 
file_list = mox.file.list_directory('s3://modelarts-demo/codes') 

In addition to direct access to OBS, you can use the cache directory /cache as the transit 
of OBS in a GPU-enabled job environment, eliminating the need to reconstruct some 
code for file access. 

Example: 

import moxing as mox 
# Download data from OBS to the local cache. 
mox.file.copy_parallel('s3://my_bucket/imput_data', '/cache/input_data') 
# Directly use the dataset in the local cache /cache/input_data to start training jobs and save the 
training output to the local cache /cache/output_log. 
train(data_url='/cache/input_data', train_url='/cache/output_log') 
# Upload the local cache to OBS. 
mox.file.copy_parallel('/cache/output_log', 's3://my_bucket/output_log') 

API reference: 
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Figure 4-2 APIs (a) 

 
Figure 4-3 APIs (b) 

4.3.3 MoXing-TensorFlow Module 
MoXing-TensorFlow is encapsulated and optimized based on TensorFlow, as shown in 
Figure 4-4. With the MoXing-TensorFlow programming framework, you only need to pay 
attention to the implementation of datasets and models. After the standalone training 
script is implemented, it is automatically extended to distributed training. 

 
Figure 4-4 MoXing-TensorFlow optimization 

Dataset: Classification (multilabel), object_detection... 

Model: resnet, vgg, inception, mobilenet... 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 52 
 

 

Optimizer: batch_gradients, dynamic_momentum, LARS... 

... 

MoXing-TensorFlow programming framework: 

import tensorflow as tf 
import moxing as mox 
# Define the data input. Receive parameter mode, whose possible values are mox.ModeKeys.TRAIN, 
#mox.ModeKeys.EVAL, and mox.ModeKeys.PREDICT. If several tf.Tensor variables are returned, 
indicating the input datasets. 
def input_fn(mode): 
... 
  return input_0,input_1,... 
 
# Receive the return value of input_fn as the input. model_fn is used to implement the model and 
return a ModelSpec instance. 
def model_fn(inputs, mode): 
  input_0, input_1 , ... = inputs 
  logits, _ = mox.get_model_fn(name='resnet_v1_50', 
                                     run_mode=run_mode, 
                                     ...) 
  loss = ... 
  return mox.ModelSpec(loss=loss, log_info={'loss': loss}, ...) 
 
# Define an optimization operator. Parameters are not accepted. An optimizer is returned. 
def optimizer_fn(): 
  opt = ... 
  return opt 
# mox.run defines the entire running process. 
mox.run(input_fn=input_fn, 
          model_fn=model_fn, 
          optimizer_fn=optimizer_fn, 
          run_mode=mox.Modekeys.TRAIN, 
          ...) 

 
mox.ModelSpec: return value of model_fn defined by the user and used to describe a 
user-defined model. 

loss: loss value of the user model. The training objective is to decrease the loss value. 

log_info: monitoring metrics (only scalars) that need to be printed on the console and 
the visualization job interface during training 

export_spec: an instance of mox.ExportSpec, which is used to specify the model to be 
exported. 

hooks: hooks registered with tf.Session 

mox.ExportSpec: class of the model to be exported 

inputs_dict: model input node 

outputs_dict: model output node 

version: model version 

Description of the mox.run parameter: 
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input_fn: user-defined input_fn 

model_fn: user-defined model_fn 

optimizer_fn: user-defined optimizer_fn 

run_mode: running mode, mox.ModeKey.TRAIN, mox.ModeKey.EVAL, ... Only in TRAIN 
mode, the loss gradient descent is performed and parameters are updated. 

log_dir: destination address of the visualization job log file, checkpoint file, and the 
exported PB model file 

max_number_of_steps: maximum number of running steps 

checkpoint_path: preloaded checkpoint path, which is frequently used in finetuning 

log_every_n_steps: console print frequency 

save_summary_steps: visualization job log saving frequency 

save_model_secs: checkpoint model saving frequency 

export_model: type of the exported model. Generally, the value is 
mox.ExportKeys.TF_SERVING. 

4.4 Procedure 

4.4.1 Using Native TensorFlow for Handwritten Digit Recognition 
This section describes how to use custom scripts to train and deploy models for 
prediction on ModelArts. This section uses TensorFlow as an example to describe how to 
recognize handwritten digits. The procedure consists of five parts: 

Preparing data: Import the MNIST dataset. 

Compiling scripts: Use the TensorFlow framework to compile model training scripts. 

Training a model: Use the compiled script to train the MNIST dataset to obtain a well-
trained model. 

Managing a model: Import the model for deployment. 

Deploying a model: Deploy the model as a real-time service, batch service, or edge 
service. 

4.4.1.1 Preparing Data 
You need to prepare data. 

4.4.1.2 Compiling Scripts 
Scripts include training script train_mnist_tf.py, inference script customize_service.py, 
and configuration file config.json. The inference script and the configuration file are used 
during model inference, that is, model deployment. Model inference must comply with 
the following specifications: 

Structure of the TensorFlow-based model package 

OBS bucket/directory name 

├── ocr 
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│ ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-
related files 

│ │ ├── <<Custom Python package>> (Optional) User's Python package, which can be 
directly referenced in the model inference code 

│ │ ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram 
description of the model 

│ │ ├── variables Name of a fixed sub-directory, which contains the weight and 
deviation rate of the model. It is mandatory for the main file of the *.pb model. 

│ │ │ ├── variables.index  

│ │ │ ├── variables.data-00000-of-00001  

| │ ├── config.json (Mandatory) Model configuration file. The file name is fixed to 
config.json. Only one model configuration file exists. 

| │ ├── customize_service.py (Optional) Model inference code. The file name is fixed to 
customize_service.py. Only one model inference code file exists. The .py file on which 
customize_service.py depends can be directly put in the model directory. 

Step 1 Interpret code. 

Training code overview: Training code uses the native TensorFlow code to train the 
MNIST dataset, that is, to process a task that classifies images to 10 categories. Each 
image contains 28 x 28 pixels. The network structure is a simple linear model. 
Initialization of all parameters is zero and training starts from scratch. 

The following is training code. The source code is stored in the following path: modelarts-
datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-TensorFlow-
for-handwritten-digit-recognition/code/train_mnist_tf.py 

from __future__ import absolute_import 
from __future__ import division 
from __future__ import print_function 
 
import os 
import sys 
 
import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data 
# Maximum number of model training steps 
tf.flags.DEFINE_integer('max_steps', 1000, 'number of training iterations.') 
# Model export version 
tf.flags.DEFINE_integer('model_version', 1, 'version number of the model.') 
# data_url indicates the data storage path of the data source on the GUI. It is a path of s3://. 
tf.flags.DEFINE_string('data_url', '/home/jnn/nfs/mnist', 'dataset directory.') 
# File output path, that is, the training output path displayed on the GUI. It is also a path of s3://. 
tf.flags.DEFINE_string('train_url', '/home/jnn/temp/delete', 'saved model directory.') 
 
FLAGS = tf.flags.FLAGS 
 
def main(*args): 
  # Train the model. 
  print('Training model...') 
  # Read the MNIST dataset. 
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  mnist = input_data.read_data_sets(FLAGS.data_url, one_hot=True) 
  sess = tf.InteractiveSession() 
  # Create input parameters. 
  serialized_tf_example = tf.placeholder(tf.string, name='tf_example') 
  feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32),} 
  tf_example = tf.parse_example(serialized_tf_example, feature_configs) 
  x = tf.identity(tf_example['x'], name='x') 
  y_ = tf.placeholder('float', shape=[None, 10]) 
  # Create training parameters. 
  w = tf.Variable(tf.zeros([784, 10])) 
  b = tf.Variable(tf.zeros([10])) 
  # Initialize parameters. 
  sess.run(tf.global_variables_initializer()) 
  # Use only the simple linear network layer and define the network output layer softmax. 
  y = tf.nn.softmax(tf.matmul(x, w) + b, name='y') 
  # Define the loss function. 
  cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) 
  # Add summary information. 
  tf.summary.scalar('cross_entropy', cross_entropy) 
 
  # Define the optimizer. 
  train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) 
  # Obtain the accuracy. 
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) 
  tf.summary.scalar('accuracy', accuracy) 
  # Summarize summary information. 
  merged = tf.summary.merge_all() 
  # Write data to the summary file every second. 
  test_writer = tf.summary.FileWriter(FLAGS.train_url, flush_secs=1) 
  # Start training. 
  for step in range(FLAGS.max_steps): 
    batch = mnist.train.next_batch(50) 
train_step.run(feed_dict={x: batch[0], y_: batch[1]}) 
# Print the verification precision rate every 10 steps. 
    if step % 10 == 0: 
      summary, acc = sess.run([merged, accuracy], feed_dict={x: mnist.test.images, y_: 
mnist.test.labels}) 
      test_writer.add_summary(summary, step) 
      print('training accuracy is:', acc) 
  print('Done training!') 
  # Save the model to the model directory of the given train_url. 
  builder = tf.saved_model.builder.SavedModelBuilder(os.path.join(FLAGS.train_url, 'model')) 
  # Save parameter information of the model. 
  tensor_info_x = tf.saved_model.utils.build_tensor_info(x) 
  tensor_info_y = tf.saved_model.utils.build_tensor_info(y) 
  # Define the signature (providing input, output, and method information) as the input parameter 
for saving the model. 
  prediction_signature = ( 
      tf.saved_model.signature_def_utils.build_signature_def( 
          inputs={'images': tensor_info_x}, 
          outputs={'scores': tensor_info_y}, 
          method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) 
  # Import the graph information and variables. 
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  # The first parameter is transferred to the current session, including the graph structure and all 
variables. 
  # The second parameter is a label for the meta graph to be saved. The label name can be 
customized. Here, the system-defined parameter is used. 
  # The third parameter is used to save the signature. 
  # main_op performs the Op or Ops group operation when loading a graph. When main_op is 
specified, it will run after the Op is loaded and recovered. 
  # Run the initialization operation. 
  # If strip_default_attrs is True, the default value attribute is deleted from the definition node. 
  builder.add_meta_graph_and_variables( 
      sess, [tf.saved_model.tag_constants.SERVING], 
      signature_def_map={ 
          'predict_images': 
              prediction_signature, 
      }, 
      main_op=tf.tables_initializer(), 
      strip_default_attrs=True) 
  # Save the model. 
  builder.save() 
 
  print('Done exporting!') 
if __name__ == '__main__': 
  tf.app.run(main=main) 

Inference code overview: Inference code inherits the TfServingBaseService class of the 
inference service and provides the preprocess and postprocess methods. The preprocess 
method is used to preprocesse the inputted images. The preprocessed images are 
transferred to the network model for final output. The model output result is transferred 
to the postprocess function for postprocessing. The postprocessed result is the final 
output result on the GUI. 

The following is inference code. The source code is stored in the following path: 
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-
TensorFlow-for-handwritten-digit-recognition/code/customize_service_mnist.py 

from PIL import Image 
import numpy as np 
import tensorflow as tf 
from model_service.tfserving_model_service import TfServingBaseService 
 
class mnist_service(TfServingBaseService): 
  # Read images and data information, preprocess the images, and resize each image to 1,784. Save 
image information to 
  # preprocessed_data and return preprocessed_data. 
  def _preprocess(self, data): 
    preprocessed_data = {} 
 
    for k, v in data.items(): 
      for file_name, file_content in v.items(): 
        image1 = Image.open(file_content) 
        image1 = np.array(image1, dtype=np.float32) 
        image1.resize((1, 784)) 
        preprocessed_data[k] = image1 
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    return preprocessed_data 
  # Postprocess the logits value returned by the model. The prediction result is the class label 
corresponding to the maximum logits value, that is, 
  # the prediction label of the image. The format is {'predict label': label_name}. 
  def _postprocess(self, data): 
     
    outputs = {} 
    logits = data['scores'][0] 
    label = logits.index(max(logits)) 
    outputs['predict label'] = label 
return outputs 

The following is the configuration file. The source code is stored in the following path: 
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-
TensorFlow-for-handwritten-digit-recognition/code/config.json 

The config.json file contains four mandatory fields: model_type, metrics, 
model_algorithm, and apis. 

Model_type: AI engine of the model, indicating the computing framework used by the 
model. 

Metrics: model precision 

Model_algorithm: model algorithm, indicating the usage of the model. 

Apis: API arrays provided by the model for external systems. 

Dependencies (optional): dependency packages of inference code and the model. 

The reference is as follows: 

{      
    "model_type":"TensorFlow", 
     # Model precision information, including the F1 score, accuracy, precision, and recall. The 
information is not mandatory for training MNIST.  
    "metrics":{ 
        "f1":0.61185, 
        "accuracy":0.8361458991671805, 
        "precision":0.4775016224869111, 
        "recall":0.8513980485387226 
    }, 
     # Dependency packages required for inference  
    "dependencies":[ 
        { 
            "installer":"pip", 
            "packages":[ 
                { 
                    "restraint":"ATLEAST", 
                    "package_version":"1.15.0", 
                    "package_name":"numpy" 
                }, 
                { 
                    "restraint":"", 
                    "package_version":"", 
                    "package_name":"h5py" 
                }, 
                { 
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                    "restraint":"ATLEAST", 
                    "package_version":"1.8.0", 
                    "package_name":"tensorflow" 
                }, 
                { 
                    "restraint":"ATLEAST", 
                    "package_version":"5.2.0", 
                    "package_name":"Pillow" 
                } 
            ] 
        } 
    ], 
     # Type of the model algorithm. In this example, the image classification model is used.  
    "model_algorithm":"image_classification", 
    "apis":[ 
        { 
            "procotol":"错误!超链接引用无效。", 
            "url":"/", 
            "request":{ 
                "Content-type":"multipart/form-data", 
                "data":{ 
                    "type":"object", 
                    "properties":{ 
                        "images":{ 
                            "type":"file" 
                        } 
                    } 
                } 
            }, 
            "method":"post", 
            "response":{ 
                "Content-type":"multipart/form-data", 
                "data":{ 
                    "required":[ 
                        "predicted_label", 
                        "scores" 
                    ], 
                    "type":"object", 
                    "properties":{ 
                        "predicted_label":{ 
                            "type":"string" 
                        }, 
                        "scores":{ 
                            "items":{ 
                                "minItems":2, 
                                "items":[ 
                                    { 
                                        "type":"string" 
                                    }, 
                                    { 
                                        "type":"number" 
                                    } 
                                ], 
                                "type":"array", 
                                "maxItems":2 
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                            }, 
                            "type":"array" 
                        } 
                    } 
                } 
            } 
        } 
    ] 
} 

Step 2 Upload scripts. 

Upload the training script to OBS. 

For details about how to upload files to OBS, see https://support.huaweicloud.com/en-
us/modelarts_faq/modelarts_05_0013.html. 

In this example, the upload path is /modelarts-demo/codes/. 

 
The file path cannot contain Chinese characters. 

  

4.4.1.3 Training a Model 

Step 1 Create a training job. 

For details about the model training process, see section 3.3.1.2 "Training a Model." 
Parameter settings are as follows: 

Data Source: Select the MNIST dataset or select the OBS path where the dataset is 
located. 

Algorithm Source: Select Frequently-used framework. 

AI Engine: Select TensorFlow and TF-1.13.1-python2.7. 

Code Directory: Select the parent path /modelarts-demo/codes/ of code. 

Boot File: Select the boot script train_mnist_tf.py. 

Resource Pool: This parameter is mandatory. Select a resource pool (including CPU and 
GPU) for the training job. GPU training is fast, and CPU training is slow. GPU/P100 is 
recommended. 

Compute Nodes: Retain the default value 1. (One node is used for standalone training, 
and more than one node is used for distributed training. Multi-node distributed training 
can accelerate the training process.) 

Figure 4-5 shows the parameter settings. After setting the parameters, click Next. After 
confirming the parameter settings, click Create Now. The job is submitted. 
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Figure 4-5 Parameter settings of the training job 

Step 2 Create a visualization job. 

For details, see Create a visualization job. in section 3.3.1.2 "Training a Model." The 
following figure shows the visualization job page. 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 61 
 

 

 
Figure 4-6 Visualization job page 

Step 3 Upload scripts. 

After the training job is complete, rename customize_service_mnist.py to 
customize_service.py, and upload the customize_service.py and config.json files to the 
model directory in the training output path (OBS path specified during training job 
creation) for model deployment. 

  

4.4.1.4 Managing Models 
For details, see section 3.3.1.3 "Managing a Model." 

4.4.1.5 Deploying a Model 
For details, see section 3.3.1.4 "Deploying a Model." The standard image format for 
image prediction is a gray handwritten digit image (28 x 28 pixels). If images do not 
meet format requirements, the prediction result may be inaccurate. Figure 4-7 shows the 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 62 
 

 

test result of the image in the following path: modelarts-datasets-and-source-
code/custom-basic-algorithms-for-deeplearning/native-TensorFlow-for-handwritten-
digit-recognition/code/test-data/2.PNG 

 
Figure 4-7 Image prediction 

4.4.2 Using MoXing-TensorFlow for Flower Recognition 
This section describes how to use MoXing custom scripts to perform distributed model 
training, deployment, and prediction on ModelArts. This section uses MoXing as an 
example to describe how to training flowers data. The procedure consists of five parts: 

Preparing data: Create and Label the flowers dataset. 

Compiling scripts: Use the MoXing framework to compile model training scripts. 

Training a model: Use the compiled script to train the flowers dataset to obtain a well-
trained model. 

Managing a model: Import the model for deployment. 

Deploying a model: Deploy a model as a real-time service. 

4.4.2.1 Preparing Data 
The data has been prepared in section 2.3.1 "Data Labeling for Flower Recognition". 

4.4.2.2 Compiling Scripts 
Scripts include training script flowers_mox.py, inference script 
customize_service_flowers.py, and configuration file config.json. The inference script 
and the configuration file will be used during model deployment. The configuration file is 
automatically generated during training. You need to upload the inference script. 

Step 1 Interpret code. 

Training code overview: Training code uses MoXing to train the flowers dataset. Both 
distributed training and standalone training are supported. The dataset has 50 images of 
five types. The resnet_v1_50 model is used to classify the images into five types. 

The following is training code. The source code is stored in the following path: modelarts-
datasets-and-source-code/custom-basic-algorithms-for-deep learning/MoXing-
TensorFlow-for-flower-recognition/code/flowers_mox.py 

Training code is as follows: 

# coding:utf-8 
from __future__ import absolute_import 
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from __future__ import division 
from __future__ import print_function 
# Import the package required for training. 
import os 
import math 
import numpy as np 
import h5py 
import tensorflow as tf 
import moxing.tensorflow as mox 
from moxing.tensorflow.optimizer import learning_rate_scheduler 
from moxing.tensorflow.builtin_algorithms.metrics import write_config_json 
from moxing.framework.common.data_utils.read_image_to_list import get_image_list 
from moxing.framework.common.metrics.object_detection_metrics import get_metrics 
from moxing.tensorflow.datasets.raw.raw_dataset import ImageClassificationRawFilelistDataset 
from moxing.tensorflow.datasets.raw.raw_dataset import ImageClassificationRawFilelistMetadata 
from moxing.tensorflow.builtin_algorithms.multilabels_metrics import process_with_class_metric 
from moxing.tensorflow.builtin_algorithms.multilabels_metrics import post_process_fn_with_metric 
# Define a dataset path. 
tf.flags.DEFINE_string('data_url', default=None, help='dataset directory') 
# Define the batch size of images to be trained, that is, the number of images trained in each step. 
tf.flags.DEFINE_integer('batch_size', default=32, help='batch size per device per worker') 
# Define the number of GPUs used for training. The default value is 1. 
tf.flags.DEFINE_integer('num_gpus', default=1, help='number of gpus for training') 
# Define a running mode. The default value is the training mode. 
tf.flags.DEFINE_string('run_mode', default=mox.ModeKeys.TRAIN, help='Optional. run_mode. Default 
to TRAIN') 
# Define a model save path. 
tf.flags.DEFINE_string('train_url', default=None, help='train dir') 
# Define a training model name. The default value is resnet_v1_50. 
tf.flags.DEFINE_string('model_name', default='resnet_v1_50', help='model_name') 
# Define an image size during model training. The value of resnet_v1_50 is 224. 
tf.flags.DEFINE_integer('image_size', default=None, help='Optional. Resnet_v1 use `224`.') 
# Define the optimizer used for model training. 
tf.flags.DEFINE_string('optimizer', default='sgd', help='adam or momentum or sgd, if None, sgd will 
be used.') 
# Define momentum. 
tf.flags.DEFINE_float('momentum', default=0.9, help='Set 1 to use `SGD` opt, <1 to use momentum 
opt') 
# Define a dataset split ratio. The default ratio of splitting a dataset into a training set and a 
validation set is 0.8:0.2. 
tf.flags.DEFINE_string('split_spec', default='train:0.8,eval:0.2', 
                       help='dataset split ratio. Format: train:0.8,eval:0.2') 
# Define a learning rate. By default, the learning rate is 0.01 for the first 800 epochs, and is 0.001 for 
800 to 1000 epochs. 
tf.flags.DEFINE_string('learning_rate_strategy', default='800:0.01,1000:0.001', 
                       help='Necessary. Learning rate decay strategy. Fotmat: 10:0.001,20:0.0001' 
                       ' which means from epoch 0~10 use learning rate = 0.01 and from epoch 
10~20 ') 
flags = tf.flags.FLAGS 
 
def main(*args): 
  # Container cache path, which is used to store models 
  cache_train_dir = '/cache/train_url' 
  # If the path does not exist, create a path. 
  if not mox.file.exists(cache_train_dir): 
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    mox.file.make_dirs(cache_train_dir) 
  # Obtain the number of training nodes. 
  num_workers = len(mox.get_flag('worker_hosts').split(',')) 
  # Obtain the number of GPUs. 
  num_gpus = mox.get_flag('num_gpus') 
  # Set the parameter update mode to parameter_server. 
  mox.set_flag('variable_update', 'parameter_server') 
  # Obtain meta information about the model. 
  model_meta = mox.get_model_meta(flags.model_name) 
  # Obtain a list of datasets. 
  data_list, _, _ = get_image_list(data_path=flags.data_url, split_spec=1) 
  # Define an image size during training. 
  image_size = [flags.image_size, flags.image_size] if flags.image_size is not None else None 
  # Define a data enhancement method. 
  # mode: training or validation. The data enhancement methods vary depending on the mode. 
  # model_name: model name 
  # output_height: output image height. The default value is 224 for resnet_v1_50. 
  # output_width: output image width. The default value is 224 for resnet_v1_50. 
  def augmentation_fn(mode): 
data_augmentation_fn = mox.get_data_augmentation_fn( 
name=flags.model_name, 
    run_mode=mode, 
    output_height=flags.image_size or model_meta.default_image_size, 
    output_width=flags.image_size or model_meta.default_image_size) 
    return data_augmentation_fn 
 
  # Obtain metadata information about the dataset. 
  # data_list: list of datasets 
  # split_spec: split ratio of the training set and validation set 
  train_dataset_meta = eval_dataset_meta = 
ImageClassificationRawFilelistMetadata(data_list=data_list,                                                                              
split_spec=flags.split_spec) 
  # Create a training set and a validation set. 
  # metadata: metadata of the stored dataset 
  # batch_size: number of images read each time 
  # image_size: image size during model training. The default value is 224*224 for resnet_v1_50. 
  # augmentation_fn: image enhancement function 
  # num_readers: number of threads for reading data 
  # preprocess_threads: number of threads for data processing 
  # shuffle: whether to shuffle data 
  # drop_remainder: whether to skip the batch when the number of images is insufficient in the last 
batch 
  train_dataset =ImageClassificationRawFilelistDataset( 
  metadata=train_dataset_meta, 
  batch_size=flags.batch_size   * mox.get_flag('num_gpus'), 
  image_size=image_size,                                                
augmentation_fn=augmentation_fn(mox.ModeKeys.TRAIN), 
  drop_remainder=True) 
 
  eval_dataset = ImageClassificationRawFilelistDataset( 
  metadata=eval_dataset_meta, 
  mode=mox.ModeKeys.EVAL, 
  batch_size=flags.batch_size * mox.get_flag('num_gpus'), 
  num_readers=1, 
  shuffle=False, 
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  image_size=image_size, 
  preprocess_threads=1, 
  reader_kwargs={'num_readers': 1, 'shuffle': False},                                                  
augmentation_fn=augmentation_fn(mox.ModeKeys.EVAL), 
  drop_remainder=True) 
  # Read the number of images in the training set and the validation set. 
  num_train_samples = train_dataset.total_num_samples 
  num_eval_samples = eval_dataset.total_num_samples 
  num_classes = train_dataset_meta.num_classes 
  labels_dict = train_dataset_meta.labels_dict 
  label_map_dict = train_dataset_meta.label_map_dict 
  # Write the index file. This file is used to save information required for model inference. The 
information saved here is a label name list, which is used for storing 
# the real label category outputted during inference prediction. (The label used in the training is one-
hot encoded information, and the real label is not saved.) 
  index_file = h5py.File(os.path.join(cache_train_dir, 'index'), 'w') 
  index_file.create_dataset('labels_list', data=[np.string_(i) for i in 
train_dataset_meta.labels_dict.keys()]) 
  index_file.close() 
  # batch_size quantity on each machine. 
  batch_size_per_device = flags.batch_size or int(round(math.ceil(min( 
num_train_samples / 10.0 / num_gpus / num_workers, 16)))) 
  # Total batch_size. 
  total_batch_size = batch_size_per_device * num_gpus * num_workers 
  # Total number of training epochs. 
  max_epochs = float(flags.learning_rate_strategy.split(',')[-1].split(':')[0]) 
  # Number of training steps. 
  max_number_of_steps = int(round(math.ceil( 
    max_epochs * num_train_samples / float(total_batch_size)))) 
  tf.logging.info('Total steps = %s' % max_number_of_steps) 
 
 
  # Define a data read function. 
  def input_fn(run_mode, **kwargs): 
    if run_mode == mox.ModeKeys.EVAL: 
      dataset = eval_dataset 
    elif run_mode == mox.ModeKeys.TRAIN: 
      dataset = train_dataset 
    else: 
      raise ValueError('Unsupported run mode. Only `TRAIN` and `EVAL` are supported. ') 
 
    image_name, image, label = dataset.get(['image_name', 'image', 'label']) 
    return mox.InputSpec(split_to_device=True).new_input(inputs=[image_name, image, label]) 
 
 
# Define postprocessing operations for validation, calculate metrics of the validation set, such as 
recall, precision, accuracy, and mean_ap, and write them into the metric.json and config.json files. 
  def multiclass_post_process_fn_with_metric(outputs): 
    output_metrics_dict = post_process_fn_with_metric(outputs) 
    post_metrics_dict = process_with_class_metric(labels_dict, output_metrics_dict, label_map_dict) 
    get_metrics(cache_train_dir, post_metrics_dict) 
    write_config_json(metrics_dict=post_metrics_dict['total'], 
                      train_url= cache_train_dir, 
                      model_algorithm='image_classification', 
                      inference_url= cache_train_dir) 
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    results = {'accuracy': post_metrics_dict['total']['accuracy']} 
 
    return results 
 
 
  # Implement the model and return a ModelSpec instance. 
  def model_fn(inputs, run_mode, **kwargs): 
    image_names, images, labels = inputs 
 
    if run_mode == mox.ModeKeys.EXPORT: 
      images = tf.placeholder(dtype=images.dtype, shape=[None, None, None, 3], 
name='images_ph') 
    image_size = flags.image_size or model_meta.default_image_size 
 
    mox_model_fn = mox.get_model_fn( 
      name=flags.model_name, 
      run_mode=run_mode, 
      num_classes=num_classes, 
      batch_norm_fused=True, 
      batch_renorm=False, 
      image_height=image_size, 
      image_width=image_size) 
    # Model output value. 
    logits, end_points = mox_model_fn(images) 
    # Process the label value. The 1/k processing is performed for k-hot label, which is obtained from 
the related paper. 
    labels_one_hot = tf.divide(labels, tf.reduce_sum(labels, 1, keepdims=True)) 
    # Calculate a cross-entropy loss. 
    loss = tf.losses.softmax_cross_entropy(labels_one_hot, logits=logits, label_smoothing=0.0, 
weights=1.0) 
    # Calculate a regularization loss. 
    regularization_losses = mox.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) 
    if len(regularization_losses) > 0: 
      regularization_loss = tf.add_n(regularization_losses) 
      loss = loss + regularization_loss 
    log_info = {'loss': loss} 
 
    inputs_dict = {'images': images} 
    outputs_dict = {'logits': logits} 
 
    export_spec = mox.ExportSpec(inputs_dict=inputs_dict, 
                                 outputs_dict=outputs_dict, 
                                 version='model') 
    # LogEvaluationMetricHook monitoring information 
    monitor_info = {'loss': loss, 'logits': logits, 'labels': labels, 'image_names': image_names} 
     
    # LogEvaluationMetricHook is used to verify the validation set during training and view the 
model training effect. 
    # monitor_info: records and summarizes information. 
    # batch_size: used to calculate epochs based on steps 
    # samples_in_train: number of samples in the training set of each epoch 
    # samples_in_eval: number of samples in the validation set of each epoch 
    # num_gpus: number of GPUs. If the value is None, value 1 will be used by default. 
    # num_workers: number of workers. If the value is None, value 1 will be used by default. 
    # evaluate_every_n_epochs: Perform verification after n epochs are trained. 
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    # mode: Possible values are {auto, min, max}. In min mode, the training ends when the 
monitoring metrics stop decreasing. In max mode, the training ends when the monitoring metrics 
stop increasing. In auto mode, the system automatically infers the value from the name of the 
monitoring metric. 
    # prefix: prefix of the message whose monitor_info is to be printed 
    # log_dir: directory for storing summary of monitor_info 
    # device_aggregation_method: function for aggregating monitor_info between GPUs 
    # steps_aggregation_method: function for aggregating monitor_info among different steps 
    # worker_aggregation_method: function for aggregating monitor_info among different workers 
    # post_process_fn: postprocesses monitor_info information. 
    hook = mox.LogEvaluationMetricHook( 
      monitor_info=monitor_info, 
      batch_size=batch_size_per_device, 
      samples_in_train=num_train_samples, 
      samples_in_eval=num_eval_samples, 
      num_gpus=num_gpus, 
      num_workers=num_workers, 
      evaluate_every_n_epochs=10, 
      prefix='[Validation Metric]', 
      log_dir=cache_train_dir, 
      device_aggregation_method=mox.HooksAggregationKeys.USE_GPUS_ALL, 
      steps_aggregation_method=mox.HooksAggregationKeys.USE_STEPS_ALL, 
      worker_aggregation_method=mox.HooksAggregationKeys.USE_WORKERS_ALL, 
      post_process_fn=multiclass_post_process_fn_with_metric) 
 
    model_spec = mox.ModelSpec(loss=loss, 
                               log_info=log_info, 
                               output_info=outputs_dict, 
                               export_spec=export_spec, 
                               hooks=hook) 
    return model_spec 
  # Define an optimization function. 
  def optimizer_fn(): 
    global_batch_size = total_batch_size * num_workers 
    lr = learning_rate_scheduler.piecewise_lr(flags.learning_rate_strategy, 
                                                      num_samples=num_train_samples, 
                                                    global_batch_size=global_batch_size) 
    # SGD optimization function 
    if flags.optimizer is None or flags.optimizer == 'sgd': 
      opt = mox.get_optimizer_fn('sgd', learning_rate=lr)() 
    # Momentum optimization function 
    elif flags.optimizer == 'momentum': 
      opt = mox.get_optimizer_fn('momentum', learning_rate=lr, momentum=flags.momentum)() 
    # Adam optimization function 
    elif flags.optimizer == 'adam': 
      opt = mox.get_optimizer_fn('adam', learning_rate=lr)() 
    else: 
      raise ValueError('Unsupported optimizer name: %s' % flags.optimizer) 
    return opt 
 
  mox.run(input_fn=input_fn, 
          model_fn=model_fn, 
          optimizer_fn=optimizer_fn, 
          run_mode=flags.run_mode, 
          inter_mode=mox.ModeKeys.EVAL, 
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          batch_size=flags.batch_size, 
          log_dir= cache_train_dir, 
          auto_batch=False, 
          save_summary_steps=5, 
          max_number_of_steps= max_number_of_steps, 
          output_every_n_steps= max_number_of_steps, 
          export_model=mox.ExportKeys.TF_SERVING) 
# The accuracy metrics of the validation set are written into the config.json file. After the training is 
complete, the file is copied to the model directory for model management. 
  mox.file.copy_parallel(cache_train_dir, flags.train_url) 
  mox.file.copy(os.path.join(cache_train_dir, 'config.json'), 
                os.path.join(flags.train_url, 'model', 'config.json')) 
  mox.file.copy(os.path.join(cache_train_dir, 'index'), 
                os.path.join(flags.train_url, 'model', 'index')) 
 
if __name__ == '__main__': 
  tf.app.run(main=main) 

Inference code overview: Inference code inherits the TfServingBaseService class of the 
inference service and provides the preprocess and postprocess methods. The preprocess 
method is used to preprocesse the inputted images. The preprocessed images are 
transferred to the network model for final output. The model output result is transferred 
to the postprocess function for postprocessing. The postprocessed result is the final 
output result on the GUI. 

The following is inference code. The source code is stored in the following path: 
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/MoXing-
TensorFlow-for-flower-recognition/code/customize_service_flowers.py 

from PIL import Image 
import h5py 
import numpy as np 
import os 
from model_service.tfserving_model_service import TfServingBaseService 
 
class cnn_service(TfServingBaseService): 
  # Read images and data information and preprocess the images. 
  def _preprocess(self, data): 
    preprocessed_data = {} 
    for k, v in data.items(): 
      for file_name, file_content in v.items(): 
        image = Image.open(file_content) 
        image = image.convert('RGB') 
        image = np.asarray(image, dtype=np.float32) 
        image = image[np.newaxis, :, :, :] 
        preprocessed_data[k] = image 
return preprocessed_data 
 
  # Postprocess the return value of the model and return the prediction result. 
  def _postprocess(self, data): 
    h5f = h5py.File(os.path.join(self.model_path, 'index'), 'r') 
    labels_list = h5f['labels_list'][:] 
    h5f.close() 
    outputs = {} 



 

 

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 69 
 

 

    # Define the softmax function. 
    def softmax(x): 
      x = np.array(x) 
      orig_shape = x.shape 
 
      if len(x.shape) > 1: 
        # Matrix 
        exp_minmax = lambda x: np.exp(x - np.max(x)) 
        denom = lambda x: 1.0 / np.sum(x) 
        x = np.apply_along_axis(exp_minmax, 1, x) 
        denominator = np.apply_along_axis(denom, 1, x) 
        if len(denominator.shape) == 1: 
          denominator = denominator.reshape((denominator.shape[0], 1)) 
        x = x * denominator 
      else: 
        # Vector 
        x_max = np.max(x) 
        x = x - x_max 
        numerator = np.exp(x) 
        denominator = 1.0 / np.sum(numerator) 
        x = numerator.dot(denominator) 
      assert x.shape == orig_shape 
 
      return x 
 
    # Perform softmax processing on the return value of the model. 
    predictions_list = softmax(data['logits'][0]) 
    predictions_list = ['%.3f' % p for p in predictions_list] 
    # Sort the results. 
    scores = dict(zip(labels_list, predictions_list)) 
scores = sorted(scores.items(), key=lambda item: item[1], reverse=True) 
# Return the category labels with top 5 reliability. 
    if len(labels_list) > 5: 
      scores = scores[:5] 
    label_index = predictions_list.index(max(predictions_list)) 
    predicted_label = str(labels_list[label_index]) 
    print('predicted label is: %s ' % predicted_label) 
    outputs['predicted_label'] = predicted_label 
    outputs['scores'] = scores 
    return outputs 

For details about the configuration file, see section 4.4.1.2 "Compiling Scripts." The values 
of four precision-related metrics are automatically generated during the training. 

Step 2 Upload scripts. 

Upload the training script to OBS. In this example, the upload path is /modelarts-
demo/codes/. 

 
The file path cannot contain Chinese characters. 

For details about how to upload data, see https://support.huaweicloud.com/en-
us/modelarts_faq/modelarts_05_0013.html. 
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4.4.2.3 Training a Model 

Step 1 Create a training job. 

For details about the model training process, see section 3.3.1.2 "Training a Model." 
Parameter settings are as follows: 

Data Source: Select the flower recognition dataset generated in section Data 
Management. 

Algorithm Source: Select Frequently-used. 

AI Engine: Select TensorFlow and TF-1.8.0-python2.7. 

Code Directory: Select the parent path /modelarts-demo/codes/ of code. 

Boot File: Select the boot script flowers_mox.py. 

Resource Pool: Select a resource pool (including CPU and GPU) for the training job. GPU 
training is fast, and CPU training is slow. GPU/P100 is recommended. 

Training Output Path: /modelarts-demo/output/flowers_mox/ 

Compute Nodes: Set it to 2. (One node is used for standalone training, and more than 
one node is used for distributed training. Multi-node distributed training can accelerate 
the training process.) 

The following figure shows the parameter settings. After setting the parameters, click 
Next. After confirming the parameter settings, click Create Now. The job is submitted. 
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Figure 4-8 Parameter settings of the training job 

Step 2 Create a visualization job. 

For details, see Create a visualization job. 4 in section 3.3.1.2 "Training a Model." 

Step 3 Upload scripts. 

After the training job is complete, rename customize_service_flowers.py to 
customize_service.py and upload it to the model directory in the training output path 
(OBS path specified during training job creation). 

  

4.4.2.4 Managing Models 
For details, see section 3.3.1.3 "Managing a Model." 

4.4.2.5 Deploying a Model 
For details, see section 3.3.1.4 "Deploying a Model." 

4.4.3 Using Native MXNet for Handwritten Digit Recognition 
This experiment describes how to use MXNet to implement handwritten digit recognition, 
deploy and test a model, and use visualization jobs in the training process. 

Step 1 Upload the MNIST dataset to the OBS bucket using the method described in 
section 2.3.3. See the following figure. 
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Figure 4-9 MNIST file 

Step 2 Upload the code file train_mnist.py to the OBS bucket. For example, upload 
train_mnist.py to the modelarts-demo/builtin-algorithm/mxnet_mxnet folder 
in the OBS path, as shown in the following figure. The source code of 
train_mnist.py is stored in the following path: modelarts-datasets-and-source-
code/custom-basic-algorithms-for-deep learning/native-MXNet-for-
handwritten-digit-recognition/code/train_mnist.py 

 
Figure 4-10 Uploading code to OBS 

The code of the training script train_mnist.py is interpreted as follows: 

# The script uses the native MXNet framework to train the MNIST dataset, which contains 60,000  
# white and black images (28 x 28 pixels), with accuracy of about 99% in the training set. 
import mxnet as mx 
import argparse 
import logging 
import os  
 
# Define input parameters. 
parser = argparse.ArgumentParser(description="train mnist", 
                                formatter_class=argparse.ArgumentDefaultsHelpFormatter) 
# Number of classes. In this example, handwritten digits are used, so the value is 10. 
parser.add_argument('--num_classes', type=int, default=10, 
                        help='the number of classes') 
# Number of samples, which is used for lr change. The MNIST training set contains 60,000 images. 
parser.add_argument('--num_examples', type=int, default=60000, 
                        help='the number of training examples') 
 
# data_url indicates the data storage path of the data source on the GUI. It is a path of s3://. 
parser.add_argument('--data_url', type=str, default=None,  
                         help='the training data') 
# Learning rate, which is the step of parameter update each time 
parser.add_argument('--lr', type=float, default=0.05, 
                        help='initial learning rate') 
# Epochs to be trained. When all datasets enter the model once, it is called an epoch. 
parser.add_argument('--num_epochs', type=int, default=10, 
                        help='max num of epochs') 
# Interval for outputting batch logs. 
parser.add_argument('--disp_batches', type=int, default=20, 
                        help='show progress for every n batches') 
# Parameters of a model are updated each time batch_size of data is processed. This is called a 
batch. 
parser.add_argument('--batch_size', type=int, default=128, 
                        help='the batch size') 
parser.add_argument('--kv_store', type=str, default='device', 
                        help='key-value store type') 
# File output path, that is, the training output path displayed on the GUI. It is also a path of s3://. 
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parser.add_argument('--train_url', type=str, default=None, 
                        help='the path model saved') 
# Number of GPUs. The job delivers this parameter based on the machine specifications in the 
selected resource pool. If you use your own code, you only need to 
# add this parameter to define the context. 
parser.add_argument('--num_gpus', type=int, default='0', 
                        help='number of gpus') 
# Determine whether the generated code must be in a format that can be deployed as an inference 
service. 
parser.add_argument('--export_model', type=int, default=1, help='1: export model for predict job \ 
                                                                     0: not export model') 
args, unkown = parser.parse_known_args() 
 
# Read data by using the MNISTIter API provided by MXNet. Because the dataset name in the market 
# is train-images-idx3-ubyte, the path is Data storage location + Training file name. 
def get_mnist_iter(args): 
    train_image = os.path.join(args.data_url, 'train-images-idx3-ubyte') 
    train_label = os.path.join(args.data_url, 'train-labels-idx1-ubyte') 
 
    train = mx.io.MNISTIter(image=train_image, 
                                 label=train_label, 
                                 data_shape=(1, 28, 28), 
                                 batch_size=args.batch_size, 
                                 shuffle=True, 
                                 seed=10) 
    return train 
 
# Construct a simple fully-connected network with activation functions. 
def get_symbol(num_classes=10, **kwargs): 
    # Initialize variables, which must be defined at the beginning of all networks. 
    data = mx.symbol.Variable('data') 
   # Flatten the input of [m, n] to [1, m*n]. 
data = mx.sym.Flatten(data=data) 
   # Fully-connected layer. num_hidden indicates the number of neurons. 
fc1  = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128) 
   # Activation function layer, which is used to add the non-linearity of the model. 
    act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") 
    fc2  = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) 
act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") 
   # The value of num_hidden is 10, because the final output is the probability of 10 digits. 
fc3  = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes) 
   # Normalize the output of the FC layer to 0 to 1. The total probability of 10 classes is 1. 
    mlp  = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') 
    return mlp 
 
def fit(args): 
   # Indicates whether distributed or standalone program is used. 
    kv = mx.kvstore.create(args.kv_store) 
  # Define the logging level and format. 
    head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' 
    logging.basicConfig(level=logging.DEBUG, format=head) 
    logging.info('start with arguments %s', args) 
    # Obtain training data. 
    train = get_mnist_iter(args) 
    # Define that the current model is stored after each epoch of the MXNet ends. 
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    checkpoint = mx.callback.do_checkpoint(args.train_url if kv.rank == 0 else "%s-%d" % ( 
        args.train_url, kv.rank)) 
    # Define a callback after each batch is complete, including running speed information and the 
mxboard file generated in the training output path. They can be used for deploying a visualization 
job. 
    batch_end_callbacks = [mx.contrib.tensorboard.LogMetricsCallback( 
            args.train_url), mx.callback.Speedometer(args.batch_size, 
                                                     args.disp_batches)] 
    # Obtain the simple fully-connected network mentioned above. 
    network = get_symbol(num_classes=args.num_classes) 
    # Define whether to run on the GPU or CPU. The num_gpus  parameter is transferred by the 
machine specifications when the job is started. You can directly use the parameter. 
  # Define context in this cyclic list mode. 
    devs = mx.cpu() if args.num_gpus == 0 else [mx.gpu(int(i)) for i in range(args.num_gpus)] 
    # Create a model. 
    model = mx.mod.Module(context=devs, symbol=network) 
    # Define initialization functions of the model. 
    initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2) 
    # Create optimizer parameters. In this example, simple initial learningrate and weightdecay are 
used. 
    optimizer_params = {'learning_rate': args.lr, 'wd' : 0.0001} 
    # Run 
    model.fit(train,# Train data. 
                begin_epoch=0,# This parameter is used for checkpoint recovery. If the checkpoint is 
loaded, this parameter is used. 
                num_epoch=args.num_epochs,# Number of epochs for training 
                eval_data=None,# Validation dataset 
                eval_metric=['accuracy'],# Validation metric. In this example, the value is acc. 
                kvstore=kv,# kvstore is used to control the standalone or distributed system. The 
standalone system is used by default. 
                optimizer='sgd',# Parameter update method. In this example, random gradient 
descent is used. 
                optimizer_params=optimizer_params,# It is used to control the changes of 
parameters, for example, lr. 
                initializer=initializer,# Model initialization function 
                arg_params=None,# Model parameter. If the value is not None, the value comes 
from the existing model. 
                aux_params=None,# Auxiliary model parameter. If the value is not None, the value 
comes from the existing model. 
                batch_end_callback=batch_end_callbacks,# Function invoked after each batch ends 
                epoch_end_callback=checkpoint,# Parameter invoked after each epoch ends 
                allow_missing=True# Model parameter missing is allowed. If a model parameter is 
missing, the initialization function is used. 
 
# Perform the following operations if you want to deploy the model as a real-time service on  
HUAWEI CLOUD ModelArts. 
    if args.export_model == 1 and args.train_url is not None and len(args.train_url): 
        end_epoch = args.num_epochs 
        save_path = args.train_url if kv.rank == 0 else "%s-%d" % (args.train_url, kv.rank) 
        params_path = '%s-%04d.params' % (save_path, end_epoch) 
        json_path = ('%s-symbol.json' % save_path) 
        logging.info(params_path + 'used to predict') 
        pred_params_path = os.path.join(args.train_url, 'model', 'pred_model-0000.params') 
        pred_json_path = os.path.join(args.train_url, 'model', 'pred_model-symbol.json') 
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  # MoXing is a Huawei-developed framework of ModelArts. In this example, the file API of MoX is 
used to access OBS. 
        import moxing.mxnet as mox 
  # copy indicates the file copy operation, and remove indicates the file deletion operation. For 
details, see mox.framework api. 
  # The required file structure is generated in train_url (training output path). 
  # |--train_url 
  #     |--model 
  #         xxx-0000.params 
  #         xxx-symbol.json 
        mox.file.copy(params_path, pred_params_path) 
        mox.file.copy(json_path, pred_json_path) 
        for i in range(1, args.num_epochs + 1, 1): 
            mox.file.remove('%s-%04d.params' % (save_path, i)) 
        mox.file.remove(json_path) 
 
if __name__ == '__main__': 
    fit(args) 

Step 3 On the ModelArts console, choose Training Jobs and click Create. 

 
Figure 4-11 Creating training jobs 

A job name must be unique. If the data source is a dataset imported from the market, 
select the corresponding dataset (you can view the dataset on the Datasets tab page of 
the Data Management page) or select the data storage location. In this example, the 
data is stored in the OBS path modelarts-demo/data. Select this path, as shown in the 
following figure. 
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Figure 4-12 Data selection 

After selecting data, select mxnet1.2.1-python2.7 in the frequently-used framework. 
Select the modelarts-demo/builtin-algorithm/mxnet_mnist/ directory where code is 
stored, and select train_mnist.py as the boot file. Select an existing path to store the 
model output. Select Public resource pools for Resource Pool and click Next. 

 
Figure 4-13 Parameter settings 

If any custom parameters need to be entered in code, you only need to define the 
corresponding argparse parsing in code, and enter the parameters in Running 
Parameter. 

 
Figure 4-14 Entering running parameters 

Step 4 After the training job is created, go to the corresponding job and wait until job 
running is complete. During the process, you can check logs and pay attention to 
the result. After the job is complete, you can view the result in Training Output 
Path. In this example, the selected OBS path is modelarts-
demo/result_log/mnist_mxnet_log. The following figure shows the result. 
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Figure 4-15 Training job output result 

The events file is generated by the mxboard. The mxboard is a module provided by the 
MXNet to observe the accuracy and loss value changes during the training process. This 
file is used to deploy the visualization job. You can create a visualization job on the right 
of the training job to view the changes of parameters, for example, the precision loss of 
the model, as shown in the following figure. 

 
Figure 4-16 Creating a visualization job 

 
Figure 4-17 Visualization job 

The model directory contains the pred_model-0000.params and pred_model-
symbol.json model files. This directory is used to import a model and deploy the model 
as a real-time service. 

Step 5 Upload the config.json configuration file and customize_service.py inference 
code to the model folder in the OBS training output path, as shown in the 
following figure. Note that the configuration file name and inference code name 
cannot be changed. 
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Figure 4-18 model structure directory 

Interpretation of the config.json configuration file 

"model_type":"MXNet", 
# The fields in metrics are used to measure model accuracy. Their values range from 0 to 1. You can 
set the fields to any value within this range. 
"metrics": {"f1": 0.39542, "accuracy": 0.987426, "precision": 0.395875, "recall": 0.394966}, 
# Write the following code based on the object detection or image classification type. In this example, 
the image classification type is used, and code is as follows: 
# image_classification 
"model_algorithm":"image_classification",  
apis_dict['request'] = \ 
      { 
        "data": { 
    "type": "object", 
    "properties": { 
     "images": { 
      "type": "file" 
     } 
    } 
   }, 
   "Content-type": "multipart/form-data" 
  } 
    apis_dict['response'] = { 
   "data": { 
    "type": "object", 
    "required": [ 
     "detection_classes", 
     "detection_boxes", 
     "detection_scores" 
    ], 
    "properties": { 
     "detection_classes": { 
      "type": "array", 
      "item": { 
       "type": "string" 
      } 
     }, 
     "detection_boxes": { 
      "type": "array", 
      "items": { 
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       "type": "array", 
       "minItems": 4, 
       "maxItems": 4, 
       "items": { 
        "type": "number" 
       } 
      } 
     }, 
     "detection_scores": { 
      "type": "number" 
     } 
    } 
   }, 
   "Content-type": "multipart/form-data" 
} 
The following code is for object detection. The value of model_algorithm is 
object_detection. 
"model_algorithm":"object_detection", 
apis_dict['request'] = \ 
      { 
        "data": { 
    "type": "object", 
    "properties": { 
     "images": { 
      "type": "file" 
     } 
    } 
   }, 
   "Content-type": "multipart/form-data" 
  } 
    apis_dict['response'] = { 
   "data": { 
    "type": "object", 
    "required": [ 
     "detection_classes", 
     "detection_boxes", 
     "detection_scores" 
    ], 
    "properties": { 
     "detection_classes": { 
      "type": "array", 
      "item": { 
       "type": "string" 
      } 
     }, 
     "detection_boxes": { 
      "type": "array", 
      "items": { 
       "type": "array", 
       "minItems": 4, 
       "maxItems": 4, 
       "items": { 
        "type": "number" 
       } 
      } 
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     }, 
     "detection_scores": { 
      "type": "number" 
     } 
    } 
   }, 
   "Content-type": "multipart/form-data" 
  } 

Interpretation of the customize_service.py inference code  

# The built-in mxnet_model_service component of MXNet is used. 
import mxnet as mx 
import requests 
import zipfile 
import json 
import shutil 
import os 
import numpy as np 
 
from mxnet.io import DataBatch 
from mms.log import get_logger 
from mms.model_service.mxnet_model_service import MXNetBaseService 
from mms.utils.mxnet import image, ndarray 
 
 
logger = get_logger() 
# Check whether the shape of the inputted image meets the requirements. If the shape does not 
meet the requirements, an error is reported. 
def check_input_shape(inputs, signature): 
    '''Check input data shape consistency with signature. 
 
    Parameters 
    ---------- 
    inputs : List of NDArray 
        Input data in NDArray format. 
    signature : dict 
        Dictionary containing model signature. 
    ''' 
    assert isinstance(inputs, list), 'Input data must be a list.' 
    assert len(inputs) == len(signature['inputs']), 'Input number mismatches with ' \ 
         'signature. %d expected but got %d.' \ 
                                           % (len(signature['inputs']), len(inputs)) 
    for input, sig_input in zip(inputs, signature['inputs']): 
        assert isinstance(input, mx.nd.NDArray), 'Each input must be NDArray.' 
        assert len(input.shape) == \ 
               len(sig_input['data_shape']), 'Shape dimension of input %s mismatches with ' \ 
                                'signature. %d expected but got %d.' \ 
                                % (sig_input['data_name'], len(sig_input['data_shape']), 
                                   len(input.shape)) 
        for idx in range(len(input.shape)): 
            if idx != 0 and sig_input['data_shape'][idx] != 0: 
                assert sig_input['data_shape'][idx] == \ 
                       input.shape[idx], 'Input %s has different shape with ' \ 
                                         'signature. %s expected but got %s.' \ 
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                                         % (sig_input['data_name'], sig_input['data_shape'], 
                                            input.shape) 
# Inherit the MXNetBaseService class. The MXNet model needs to inherit this base class when an 
inference service is deployed. 
class DLSMXNetBaseService(MXNetBaseService): 
    '''MXNetBaseService defines the fundamental loading model and inference 
       operations when serving MXNet model. This is a base class and needs to be 
       inherited. 
    ''' 
    def __init__(self, model_name, model_dir, manifest, gpu=None): 
        print ("-------------------- init classification servive -------------") 
        self.model_name = model_name 
        self.ctx = mx.gpu(int(gpu)) if gpu is not None else mx.cpu() 
        self._signature = manifest['Model']['Signature'] 
        data_names = [] 
        data_shapes = [] 
        for input in self._signature['inputs']: 
            data_names.append(input['data_name']) 
            # Replace 0 entry in data shape with 1 for binding executor. 
            # Set batch size as 1 
            data_shape = input['data_shape'] 
            data_shape[0] = 1 
            for idx in range(len(data_shape)): 
                if data_shape[idx] == 0: 
                    data_shape[idx] = 1 
            data_shapes.append(('data', tuple(data_shape))) 
         
       # Load the MXNet model to the model directory of train_url. load_epoch of params can be 
       # directly define here. 
        epoch = 0 
        try: 
            param_filename = manifest['Model']['Parameters'] 
            epoch = int(param_filename[len(model_name) + 1: -len('.params')]) 
        except Exception as e: 
            logger.warning('Failed to parse epoch from param file, setting epoch to 0') 
       # load indicates the loaded well-trained model, and sym indicates model information, 
including the contained layers. arg and aux are models. 
       # Parameter information, which is stored in params on MXNet. 
        sym, arg_params, aux_params = mx.model.load_checkpoint('%s/%s' % (model_dir, 
manifest['Model']['Symbol'][:-12]), epoch) 
       # Define a module, and place model network information and the contained parameters on 
ctx, which can be a CPU or GPU. 
        self.mx_model = mx.mod.Module(symbol=sym, context=self.ctx, 
                                            data_names=['data'], label_names=None) 
       # Bind the compute module to the compute engine. 
        self.mx_model.bind(for_training=False, data_shapes=data_shapes) 
       # Set the parameter to the parameter of the trained model. 
        self.mx_model.set_params(arg_params, aux_params, allow_missing=True) 
   # Read images and data. The function is called when its name contains _preprocess. 
    def _preprocess(self, data): 
        img_list = [] 
        for idx, img in enumerate(data): 
            input_shape = self.signature['inputs'][idx]['data_shape'] 
            # We are assuming input shape is NCHW 
            [h, w] = input_shape[2:] 
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            if input_shape[1] == 1: 
                img_arr = image.read(img, 0) 
            else: 
                img_arr = image.read(img) 
            # Resize the image to 28 x 28 pixels. 
            img_arr = image.resize(img_arr, w, h) 
            # Re-arrange the image to the NCHW format. 
            img_arr = image.transform_shape(img_arr) 
            img_list.append(img_arr) 
        return img_list 
     # Summarize the inference results, and return top 5 confidence. 
    def _postprocess(self, data): 
        dim = len(data[0].shape) 
        if dim > 2: 
            data = mx.nd.array(np.squeeze(data.asnumpy(), axis=tuple(range(dim)[2:]))) 
        sorted_prob = mx.nd.argsort(data[0], is_ascend=False) 
       # Define the output as top 5. 
        top_prob = map(lambda x: int(x.asscalar()), sorted_prob[0:5]) 
        return [{'probability': float(data[0, i].asscalar()), 'class': i} 
                for i in top_prob] 
   # Perform a forward process to obtain the model result output. 
    def _inference(self, data): 
        '''Internal inference methods for MXNet. Run forward computation and 
        return output. 
 
        Parameters 
        ---------- 
        data : list of NDArray 
            Preprocessed inputs in NDArray format. 
 
        Returns 
        ------- 
        list of NDArray 
            Inference output. 
        ''' 
       # Check the data format. 
        check_input_shape(data, self.signature) 
        data = [item.as_in_context(self.ctx) for item in data] 
        self.mx_model.forward(DataBatch(data)) 
        return self.mx_model.get_outputs()[0] 
   # The ping and signature functions are used to check whether the service is normal. You can 
define the functions as follows: 
    def ping(self): 
        '''Ping to get system's health. 
 
        Returns 
        ------- 
        String 
            MXNet version to show system is healthy. 
        ''' 
        return mx.__version__ 
 
    @property 
    def signature(self): 
        '''Signiture for model service. 
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        Returns 
        ------- 
        Dict 
            Model service signiture. 
        ''' 
        return self._signature 

Step 6 Import a model and deploy it as a real-time prediction service. In the navigation 
pane, click Model Management. On the displayed page, click Import. See the 
following figure. 

 
Figure 4-19 Importing a model 

Select the path of the specified meta model. When selecting the path, select the upper-
level directory of the model file and click Create Now. See the following figure. 

 
Figure 4-20 Selecting a path for importing a model 

On the Model Management page, locate the mx_mnist_demo model and choose 
Deploy > Real-Time Services. 
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Figure 4-21 Deploying a real-time service 

On the Deploy page, enter the following parameters: 

input_data_shape indicates the shape of the inputted image. The MNIST dataset 
contains 28 x 28 pixels images. Therefore, enter 0,1,28,28. 

output_data_shape is the model output. MNIST is a sample set of 10 classes. Therefore, 
enter 0,10, which indicates a value ranging from 0 to 10. 

input_data_name is set to images for tests on the public cloud UI. If the API structure is 
invoked, this parameter can be left blank. See the following figure. 

 
Figure 4-22 Deploying a real-time service 

After the service deployment is complete, upload the image in the following path: 
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-
MXNet-for-handwritten-digit-recognition/test-data/6.jpg. The 28 x 28 pixels MNIST 
handwritten images with white characters on black background are used for testing. See 
the following figure. 

 
Figure 4-23 Test result of the real-time service 

 
After the experiment is complete, disable the service in a timely manner to avoid 
unnecessary expenses. 
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