Huawei Al Certification Training

HCIP-AI-El Developer

Image Processing Lab Guide

ISSUE:2.0

N

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

Q) , . .
wawe and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of
their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made
between Huawei and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided "AS IS" without warranties,
guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has
been made in the preparation of this document to ensure accuracy of the contents, but
all statements, information, and recommendations in this document do not constitute
a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129
People's Republic of China

Website: http://e.huawei.com

Huawei Prorietary and Confidential
Copyright © Huawei Technologies Co,Ltd

http://e.huawei.com/

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 1

Huawei Certificate System

Huawei's certification system is the industry's only one that covers all ICT technical
fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT
technical architecture featuring cloud-pipe-device synergy. It provides three types of
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT
Vertical Certification.

To meet ICT professionals' progressive requirements, Huawei offers three levels of
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional
(HCIP), and Huawei Certified ICT Expert (HCIE).

HCIP-AI-El Developer V2.0 certification is intended to cultivate professionals who
have acquired basic theoretical knowledge about image processing, speech processing,
and natural language processing and who are able to conduct development and
innovation using Huawei enterprise Al solutions (such as HUAWEI CLOUD El), general
open-source frameworks, and ModelArts, a one-stop development platform for Al
developers.

The content of HCIP-AI-EIl Developer V2.0 certification includes but is not limited to:
neural network basics, image processing theory and applications, speech processing
theory and applications, natural language processing theory and applications,
ModelArts overview, and image processing, speech processing, natural language
processing, and ModelArts platform development experiments. ModelArts is a one-stop
development platform for Al developers. With data preprocessing, semi-automatic data
labeling, large-scale distributed training, automatic modeling, and on-demand model
deployment on devices, edges, and clouds, ModelArts helps Al developers build models
quickly and manage the lifecycle of Al development. Compared with V1.0, HCIP-AI-EI
Developer V2.0 adds the ModelArts overview and development experiments. In
addition, some new El cloud services are updated.

HCIP-AI-El Developer V2.0 certification proves that you have systematically
understood and mastered neural network basics, image processing theory and
applications, speech processing theory and applications, ModelArts overview, natural
language processing theory and applications, image processing application
development, speech processing application development, natural language processing
application development, and ModelArts platform development. With this certification,
you will acquire (1) the knowledge and skills for Al pre-sales technical support, Al
after-sales technical support, Al product sales, and Al project management; (2) the
ability to serve as an image processing developer, speech processing developer, or
natural language processing developer.

Page 2

HCIP-AI-El Developer V2.0 Image Processing Lab Guide

9s n SSa00Y UOISSILUSURL |
ePOSSY 1| PAYII) 1IdMeNH NGS NYIM wodereq e
uol 4!
/4 I NNE
_@ Bunndwo? Juabiaiu| Beios ainpnaseyu) 1)
‘ ¥/
» Jua) gleq
JeUOISSAJ0Ud 1| PRYILII) IBMenH
/4=
((@ 221035 pnop Bunndwo) pnop
uonedyna)
wadx3 1l Uwﬂ.tuu RMENH SRS SDIASS pue uuopeld
UONEIIUNLUILLIO)
s - uoIsiA Juabiaiu) 10 v eleq big
Kayes angng 3dueuly UOREIYIAD) JENUAA 1DI

uoned1II) IaMenH

IIMVNH 7§ 0110J3104 uoned|iud) lsmenH

S

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 3

About This Document

Overview

This document is a training course for HCIP-Al certification. It is prepared for trainees who
are going to take the HCIP-Al exam or readers who want to understand basic Al knowledge.
By mastering the content of this manual, you will be able to preprocess images and develop
image tagging, text recognition, and image content moderation using HUAWEI CLOUD
SERVICES. In the experiment of image preprocessing, we mainly use OpenCV library, while
in the lab of image tagging, you can submit RESTful requests to invoke related services of
HUAWEI CLOUD. Huawei Enterprise Cloud El provides various APIs for image processing
applications.

Description

This lab guide consists of three experiments, including image preprocessing lab based on
OpenCV library, Smart Album based on HUAWEI CLOUD El image tag tasks services. These
labs aim to improve the practical capability processing image when using Al.

e Experiment 1: Image data preprocessing.

e Experiment 2: Using HUAWEI CLOUD El image tagging services to implement smart
albums.

Background Knowledge Required

This course is a Huawei certification development course. To better master the contents of
this course, readers of this course must meet the following requirements:

® Basic programming capability

e Be familiar of data structure

Experiment Environment Overview

e Python3.6, OpenCV, numpy, matplotlib, pillow
e HUAWEI CLOUD modelarts (recommended)

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 4

Contents

ADbOUL ThiS DOCUMENTceiiiiiieiieietnennceststeesassssssssesssssssssessssssssssssssssssesssssssssessosaas 3
OVEIVIBW ...ttt ettt sese ettt sttt st b st s st b st e s e et s et b st atestae b astaeen 3
DIESCIIPLION ettt ese s essesstases st ta st s s e et R bbb ettt s s st ssessestese 3
Background Knowledge REGUITE ...ttt ts i es st sttt 3
EXperiment ENVIFONMENT OVEIVIEWc.cocuericirirnicireinecirerseeisessee st asesstsssesstae e st ssesstasssesstssssesesasssesssassscsesnsssessaens 3
T Image Data PreproCessing.........iiiiinninninnennensiessssssssssssssssssssssssssssssssssossssssssssssssssses 6
1.1 INEFOAUCTION ettt ea st bbbt e et ettt bbbt 6
LI o)=Yt Y/ PP ST TRTTT 6
1.3 Lab ENVIrONMENT DESCIIPLION......ieirireerireereereseeneessisstssessssssssss s ssssssass s sssnssns 6
11 PrOCEAUIE ...ttt ettt st bbb e e bbbttt bbbt 6
T.4.T BASIC OPEIAtIONS.....cieeeieireerieireieeeiseisee sttt sttt sst st s s st st se sttt s st et st bttt t e eeasbrebesanens 6
1.4.2 COLOT SPACE CONVEISION ...cvureiecirieieeireisesissesessssssesssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssesssssssessssessessssassessssassesssssssassnses 8
1.4.3 coOrdinate TranSFOIMIATION ..ottt es s s ss bbbt st sneas 12
1.4.4 grayscale TranSfOrMAtION ...ttt e ts s s ss ettt st sttt beees 21
1145 NISTOGIAM ..ttt ettt eb bbb bt e e b st st bbb b bbbttt bbbt st es 26
T80 TILERIING oottt sttt s b s bbb ettt 29
1.5 EXPEITMENT SUMIMAIY ..orvuieiirirricirereiciresetet st sese et sese et sesesaetsesesasssesesastsesebaessesesasssesesastsesetastsesesasssesstasssesesusssessasssessans 38
2 HUAWEI CLOUD El Image Tag SeIVICe......iiiiirninnenssnsssssssssassssssssssssssssssasssssssssnes 39
2.7 INtroduction tO the EXPEIIMENT......oireeeieieeeeeeseereeseessess st sss s sssssssssssassnssnes 39
2.2 ODJECEIVE ...ttt sttt b e s s s b s s st ae A s b A b s b A b AR s b e bR e an s e e a st en st 39
2.3 LD APIS ettt b s e R bttt 40
2.3.1 REST APIS ettt ettt ssse ettt s s s s b et bttt 40
2.3.2 REST APl REQUESE/RESPONSE SLIUCTUIE......cecvureririeeierieee st sssssssssssssssssesssssssesssssssssssssssssssssssesssssssesssssssessnses 40
2.3.3 IMAGE TAGGING APl ...ttt st st st et ettt bttt s b antas 41
2.4 PPOCEAUIE ...ttt ettt st ettt eb st bbb s et b st bbb bbbttt bbbt eesn 43
2.4.7 APPLYING FOI @ SEIVICE ..ottt sessees et tssb s bbb st b bbb bbb s s s s eessesensnen 43
2.4.2 (Optional) Downloading the image recognition SDK..........crreorininensnsnensssess s ssssssssssssssssssssssssses 45
2.4.3 Use AK/SK to perform image tag management. (Skip this step if you alrealy have ak/sk)................... 46
2.4.4 0Opening the JUPYLEr NOLEDOOK ...ttt sssss st st ss s s ssssasssssssssssssssssnes 47
2.4.5 DOWNLOAAING @ DALASEL ...t esessesssse st sss s s s s s s sssnssnssnnes 48
2.4.6 INItialize IMAGE TAQG SEIVICE ...ttt ss s ss s e ss s s s ssbss s s s s enssssssesssssnsensnsns 48
2.4.7 LabeliNg relat@d PROTOS. ...ttt sss s ss s sttt s s bbb s s s sssssssssssssssssenes 49
2.4.8 Making Dynamic Album by Using Marking RESULLSccceuirierirenirrireeisieessessisissee s sesssssssessssssssssnens 50

2.4.9 Automatically classify photoS With LaDelS...........ee et sssssssnes 53

e

HUAWEI

2.5 Experiment Summary

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 5

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 6

Image Data Preprocessing

1.1 Introduction

The main purpose of image preprocessing is to eliminate irrelevant information in images,
restore useful information, enhance information detectability, and simplify data to the
maximum extent, thus improving the reliability of feature extraction and image
segmentation, matching, and recognition.

In this experiment, the OpenCV image processing library is used to implement basic image
preprocessing operations, including color space conversion, coordinate transformation,
grayscale transformation, histogram transformation, and image filtering.

1.2 Objective

In this experiment, the image preprocessing technology introduced in the theoretical
textbook is implemented by the OpenCV image processing library of Python. This exercise
will help you learn how to use OpenCV to preprocess images. This experiment helps
trainees understand and master the methods and skills of using Python to develop image
preprocessing technologies.

1.3 Lab Environment Description

In this experiment, you are advised to install the Python environment of a version later
than 3.6 and install external libraries OpenCV, numpy, and maplotlib.

1.4 Procedure

1.4.1 Basic Operations

Note: All images read in the code in Lab 1.4 can be read from the local images of the
trainees.

Step 1 Define the matshow function to facilitate picture display.

import matplotlib.pyplot as plt
import numpy as np

import cv2

%matplotlib inline

Az

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 7

use matplotlib to show opencv pic
def matshow(title='image',image=None,gray=False):

if isinstance(image,np.ndarray):
if len(image.shape) ==2:
pass
elif gray == True:
transfer color space to gray in opencv
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
transfer color space to RGB in opencv
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure()
plt.imshow(image,cmap='gray')

plt.axis('off') # close axis F~E A REH
plt.title(title) # title
plt.show()

Step 2

Image reading and display

import cv2
read one image

the secend parameter show the way to read, 1 means read as a color image, 0 means gray

im = cv2.imread(r"lena.png"”,1)
matshow("test",im)

Output:

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-1 Lena Image 1

Step 3 Display data types and image sizes

Page 8

Print the data structure type of the image data.
print(type(im))

Size of the printed image.

print(im.shape)

Output:
<class'numpy.ndarray'>
(512,512, 3)

Step 4 Image storage

Save the image to the specified path.
cv2.imwrite('lena.jpg’, im)

Output:
True

1.4.2 color space conversion

Step 1 color image graying

import cv2
im = cv2.imread(r"lena.jpg")
matshow("BGR", im)

img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
matshow("Gray", img_gray)

Use cvtColor to change the color space. cv2. COLOR_BGR2GRAY indicates BGR to gray.

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 9

Figure 1-2 Original lena image

Gray

Figure 1-3 Gray scale lena image

Step 2 Replace the three-channel sequential BGR with the RGB.

import cv2

im = cv2.imread(r"lena.jpg")

matshow("BGR", im)

Use cvtColor to change the color space. cv2. COLOR_BGR2RGB indicates BGR to RGB.

Az

HUAWEI

HCIP-AI-El Developer V2.0 Image Processing Lab Guide Page 10

im_rgb = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
When the image data is in three channels, the imshow function considers that the data is BGR.

Run the imshow command to display RGB data. It is found that the image color is distorted.
matshow("RGB", im_rgb)

Output:

Figure 1-4 Original lena image

RGB

Figure 1-5 Displaying the RGB lena image using the BGR channel

Step 3 BGR and HSV color space conversion

| import cv2

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 11

im = cv2.imread(r"lena.jpg")
matshow("BGR", im)
Use cvtColor to change the color space. cv2. COLOR_BGR2HSV indicates BGR to HSV.

im_hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)

When the image data is in three channels, the imshow function considers that the data is BGR.
Run the imshow command to display HSV data. The HSV component is forcibly displayed as the
BGR.

matshow("HSV", im_hsv)

Output:

Figure 1-6 Original lena image

H5V

S

HUAWEI

1.4.3 coordinate Transformation

Step 1

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 12

Figure 1-7 Displaying the HSV lena image using the BGR channel

translation

import numpy as np
import cv2
Define the translate function.
def translate(img, x, y):
Obtain the image size.
(h, w) = img.shape[:2]

Define the translation matrix.

M = np.float32([[1, 0, x], [0, 1, yI1)

Use the OpenCV affine transformation function to implement the translation operation.

shifted = cv2.warpAffine(img, M, (w, h))

Return the shifted image.
return shifted

Load and display the image.
im = cv2.imread('lena.jpg’)
matshow("Orig", im)

Translate the original image.
50 pixels down.

shifted = translate(im, 0, 50)
matshow("Shift1", shifted)

100 pixels left.

shifted = translate(im, -100, 0)
matshow("Shift2", shifted)

50 pixels right and 100 pixels down.

shifted = translate(im, 50, 100)
matshow("Shift3", shifted)

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-8 Original lena image

shift1

Figure 1-9 Move down a 50-pixel lena image

Page 13

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 14

shift2

Figure 1-10 Move the 100-pixel lena image to the left.

shiftl

Figure 1-11 Moves the image right by 50 pixels and moves down by 100
pixels.

Step 2 rotation

S

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 15

import numpy as np
import cv2

Define the rotate function.

def rotate(img, angle, center=None, scale=1.0):
Obtain the image size.
(h, w) = img.shape[:2]

The missing value of the rotation center is the image center.
if center is None:
center=(w /2, h/2)

Invoke the function of calculating the rotation matrix.
M = cv2.getRotationMatrix2D(center, angle, scale)

Use the OpenCV affine transformation function to implement the rotation operation.
rotated = cv2.warpAffine(img, M, (w, h))

Return the rotated image.
return rotated

im = cv2.imread('lena.jpg’)
matshow("Orig", im)

Rotate the original image.

45 degrees counterclockwise.
rotated = rotate(im, 45)
matshow("Rotate1", rotated)
20 degrees clockwise.
rotated = rotate(im, -20)
matshow("Rotate2", rotated)
90 degrees counterclockwise.
rotated = rotate(im, 90)
matshow("Rotate3", rotated)

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-12 Original lena image

Rotatel

Figure 1-13 45 degrees counterclockwise lena image

Page 16

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Rotate?

Figure 1-14 20 degrees clockwise lena image

Rotate3

Figure 1-15 90 degrees counterclockwise lena image

Step 3 Mirroring

Page 17

| import numpy as np

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 18

import cv2

im = cv2.imread('lena.jpg')
matshow("orig", im)

Perform vertical mirroring.
im_flip0 = cv2.flip(im, 0)
matshow("flip vertical", im_flip0)

im_flip1 = cv2.flip(im, 1)
Perform horizontal mirroring.
matshow("flip horizontal", im_flip1)

Output:

Figure 1-16 Original lena image

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 19

flip vertical

Figure 1-17 Vertical mirror lena image

flip horizontal

Figure 1-18 Horizontal mirror lena image

Step4 Zoom

| import numpy as np

Az

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 20

import cv2

im = cv2.imread('lena.jpg')
matshow("orig", im)

Obtain the image size.
(h, w) = im.shape[:2]

Target size for scaling.
dst_size = (200, 300)

Nearest interpolation
method = cv2.INTER_NEAREST

Perform scaling.
resized = cv2.resize(im, dst_size, interpolation = method)
matshow("resized1", resized)

Target size for scaling.
dst_size = (800, 600)

Bilinear interpolation
method = cv2.INTER_LINEAR

Perform scaling.
resized = cv2.resize(im, dst_size, interpolation = method)
matshow("resized2", resized)

Output:

orig

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 21

Figure 1-19 Original lena image

resized]

Figure 1-20 nearest interpolation scaling lena image

resized?

Figure 1-21 Bilinear interpolation scaling lena image

1.4.4 grayscale Transformation

Step 1 Grayscale Transformation. inversion, grayscale stretch, grayscale compression

Az

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 22

Define the linear grayscale transformation function.
k > 1: Stretch the grayscale value.
0 < k < 1: Compress the grayscale value.
k = -1, b = 255: Perform grayscale inversion.
def linear_trans(img, k, b=0):
Calculate the mapping table of linear grayscale changes.
trans_list = [(np.float32(x)*k+b) for x in range(256)]
Convert the list to np.array.
trans_table =np.array(trans_list)
Adjust the value out of the range [0,255] and set the data type to uint8.
trans_table[trans_table>255] = 255
trans_table[trans_table<0] = 0
trans_table = np.round(trans_table).astype(np.uint8)
Use the look up table function in the OpenCV to change the image grayscale value.
return cv2.LUT(img, trans_table)

im = cv2.imread('lena.jpg',0)
matshow('org', im)

Inversion.

im_inversion = linear_trans(im, -1, 255)
matshow('inversion', im_inversion)

Grayscale stretch.

im_stretch = linear_trans(im, 1.2)
matshow('graystretch’, im_stretch)

Grayscale compression.

im_compress = linear_trans(im, 0.8)
matshow('graycompress', im_compress)

Output:

arg

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 23

Figure 1-22 Original lena grayscale image

Inversion

Figure 1-23 Flip the lena grayscale image.

graystretch

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 24

Figure 1-24 Gray scale stretch lena gray scale chart

Eraycompress

Figure 1-25 Gray-scale compression lena grayscale image

Step 2 gamma transformation

Define the gamma transformation function.
def gamma_trans(img, gamma):

Firstly normalize the input to [0,1], perform the gamma function, and then restore the input to
[0,255].

gamma_list = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]

Convert list to np.array and set the data type to uint8.

gamma_table = np.round(np.array(gamma_list)).astype(np.uint8)

Use the look up table function of the OpenCV to change the image grayscale value.

return cv2.LUT(img, gamma_table)

im = cv2.imread('lena.jpg',0)
matshow('org', im)

Use the gamma value 0.5 to stretch the shadow and compress the highlight.
im_gama05 = gamma_trans(im, 0.5)

matshow('gama0.5', im_gama05)

Use the gamma value 2 to stretch the highlight and compress the shadow.
im_gama2 = gamma_trans(im, 2)

matshow('gama?2’, im_gamaz2)

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-26 Original lena grayscale image

gamal. &
i,

Figure 1-27 Gamma coefficient 0.5 lena grayscale chart

Page 25

e

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 26

Figure 1-28 Grayscale map with the gamma coefficient of 2 lena

1.4.5 histogram

Step 1 Histogram display

from matplotlib import pyplot as plt
Read and display the image.

im = cv2.imread("lena.jpg",0)
matshow('org', im)

Draw a histogram for the grayscale image.
plt.hist(im.ravel(), 256, [0,256])
plt.show()

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 27

Figure 1-29 Original lena grayscale image

0 30 100 130 X 20
Figure 1-30 lena gray histogram

Step 2 histogram equalization

im = cv2.imread("lena.jpg",0)
matshow('org', im)

Invoke the histogram equalization API of the OpenCV.
im_equ1 = cv2.equalizeHist(im)

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 28

matshow('equal’, im_equ1)

Display the histogram of the original image.
plt.subplot(2,1,1)

plt.hist(im.ravel(), 256, [0,256],label='org")
plt.legend()

Display the histogram of the equalized image.
plt.subplot(2,1,2)

plt.hist(im_equ1.ravel(), 256, [0,256],label="equalize")
plt.legend()

plt.show()

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 29

Figure 1-31 Original lena grayscale image

equal

Figure 1-32 Lena gray scale after histogram equalization

1000 1

1] a 100 130 Xl 230

I =qual ize

i -

0 i 1] 100 130 X0 50

Figure 1-33 Histogram comparison before and after equalization

1.4.6 filtering

Step 1 median filtering

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 30

import cv2
import numpy as np

im = cv2.imread('lena.jpg')
matshow('org', im)

Invoke the median fuzzy APl of OpenCV.
im_medianblur = cv2.medianBlur(im, 5)

matshow('median_blur', im_medianblur)

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-34 Original lena image

median_blur

Figure 1-35 Lena image after median filtering

Step 2 mean filtering

Page 31

Method 1: Invoke the OpenCV API directly.
import cv2
import numpy as np

im = cv2.imread('lena.jpg')
matshow('org', im)

Invoke the API for fuzzy average value of OpenCV.
im_meanblur1 = cv2.blur(im, (3, 3))

matshow('mean_blur_1', im_meanblur1)

Method 2: Use mean operator and filter2D to customize filtering.
import cv2
import numpy as np

im = cv2.imread('lena.jpg’)
matshow('org’, im)

mean operator

mean_blur = np.ones([3, 3], np.float32)/9

Use filter2D to perform filtering.
im_meanblur2 = cv2.filter2D(im, -1, mean_blur)
matshow('mean_blur_2', im_meanblur2)

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Output:

Figure 1-36 Original lena image

mean_blur_1

Figure 1-37 Lena image after OpenCV mean filtering

Page 32

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-38 Original lena image

mean_blur_2

Figure 1-39 Lena image after custom average filtering

Step 3 Gaussian filtering

Page 33

import cv2
import numpy as np

im = cv2.imread('lena.jpg')

Az

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 34

matshow('org',im)

Invoke the Gaussian filtering API of the OpenCV.
im_gaussianblur1 = cv2.GaussianBlur(im, (5, 5), 0)

matshow('gaussian_blur_1',im_gaussianblur1)

Method 2: Use the Gaussian operator and filter2D to customize filtering operations.
import cv2
import numpy as np

im = cv2.imread('lena.jpg')
matshow('org',im)

Gaussian operator
gaussian_blur = np.array([
[1,4,7,41],
[4,16,26,16,4],
[7,26,41,26,7],
[4,16,26,16,4],
[1,4,7,4,1]], np.float32)/273

Use filter2D to perform filtering.
im_gaussianblur2 = cv2.filter2D(im,-1,gaussian_blur)
matshow('gaussian_blur_2',im_gaussianblur2)

Output:

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 35

Figure 1-40 Original lena image

gaussian_blur_1

Figure 1-41 Lena image after OpenCV Gaussian filtering is used

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Figure 1-42 Original lena image

gaussian_blur_2

Figure 1-43 Lena image after user-defined Gaussian filtering

Step 4 sharpening

Page 36

im = cv2.imread('lena.jpg')
matshow('org',im)
Sharpening operator 1.
sharpen_1 = np.array([

[-1,-1,-1],

[-1,9,-1],

[-1,-1,-11D
Use filter2D to perform filtering.
im_sharpen1 = cv2.filter2D(im,-1,sharpen_1)
matshow('sharpen_1',im_sharpenT)

Sharpening operator 2.

sharpen_2 = np.array([
[0,-1,0],
[-1,8,-1],
[0,1,0]1)/4.0

Use filter2D to perform filtering.
im_sharpen2 = cv2.filter2D(im,-1,sharpen_2)
matshow('sharpen_2',im_sharpen2)

Output:

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 37

Az

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 38

Figure 1-45 Sharpening lena image 1

sharpen_2

Figure 1-46 Sharpening lena image 2

1.5 Experiment Summary

This section describes how to use the OpenCV image processing library to preprocess
images in Python. In this experiment, the OpenCV image processing library is used to
implement basic image preprocessing operations, including color space conversion,
coordinate transformation, grayscale transformation, histogram transformation, and
image filtering. This section can deepen the perception of the image preprocessing
technology and provide practical operation guidance for using the technology.

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 39

HUAWEI CLOUD EI Image Tag
Service

2.1 Introduction to the Experiment

Image recognition is a technology that uses a computer to process, analyze, and
understand images to identify objects in different modes. Image recognition is available
through open application programming interfaces (APIs). You can obtain the prediction
results by accessing and invoking the APIs in real time. The APIs help you collect key data
automatically and build an intelligent service system, thereby improving service efficiency.

Natural images have rich semantic content. An image contains multiple tags. HUAWEI
CLOUD Image tags services can identify more than 3000 objects and more than 20,000
scenes and concept tags, making certain applications such as intelligent album
management, photo search and classification, and scenario-based content or object-based
ad recommendation more accurate.

In the information age, people are used to taking photos with their mobile phones.
However, the information age has also brought about an explosion of information, and if
not properly organized, people's electronic devices may have thousands of photographs,
which are difficult to clear up.

There are a lot of software on the market for making electronic albums, but there are
some limitations and some are expensive. By combining Al APIs and Python functions
provided by HUAWEI CLOUD El, you can customize your desired albums.

This lab describes how to use the image recognition service of HUAWEI CLOUD to
implement simple electronic album arrangement.

2.2 Objective

This exercise describes how to use image tagging services to tag images. Currently, Huawei
public cloud provides the RESTful API of image recognition and the SDK based on Python.
This exercise will guide trainees to understand and master how to use Python to use the
image tag service to intelligently arrange albums.

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 40

2.3 Lab APlIs
2.3.1 REST APIs

HUAWEI CLOUD APIs comply with RESTful API design specifications. Representational
State Transfer (REST) allocates Uniform Resource Identifiers (URIs) to dispersed resources
so that the resources can be located. Applications on clients use Uniform Resource Locators

(URLs) to obtain the resources.

2.3.2 REST API Request/Response Structure
A RESTful API request/response consists of the following five parts:

® Request URL
The URL format is as follows: https://Endpoint/uri. The parameters in the URL are
described in URL.

Table 2-1 URL parameter description

Parameter Description

Web service entrance URL. Obtain this value from Regions and

) Endpoints.
Endpoint o))
Endpoint image.cn-north-4.myhuaweicloud.com corresponding to the
image recognition service is used by all service APIs.
uri Resource path, that is, the APl access path. Obtain the value from the
URI of the API, for example, /v1.0/ais/subscribe.

® Request header

The request header consists of two parts: HTTP method and optional additional request
header field (such as the field required by a specified URI and HTTP method).

Table 2-2 describes the request methods supported by RESTful APIs.
Table 2-2 Request method description

Method Description
GET Requests the server to return specified resources.
PUT Requests the server to update specified resources.
POST Requests the server to add resources or perform a special operation.
DELETE Requests the server to delete specified resources, for example, objects.
Requests the server to update partial content of a specified resource.
PATCH If a target resource does not exist, PATCH may create a resource.

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 41

® Request body

A request body is generally sent in a structured format (for example, JSON or XML),
corresponding to Content-type in the request header, and is used to transfer content except
the request header. If a request body contains a parameter in Chinese, the parameter must
be coded in UTF-8 mode.

® Response header

A response header contains two parts: status code and additional response header field.

Status code, including success codes 2xx and error codes 4xx or 5xx. Additional response
header field, such as the field required by the response supporting a request (the field in
the Content-type response header).

® Response body

A response body is generally returned in a structured format (for example, JSON or XML),
and is used to transfer content except the response header. When a service request is
successfully sent, the service request result is returned. When a service request fails to be
sent, an error code is returned. Request Initiation Methods

There are three methods to initiate constructed requests, including:
e cURL

cURL is a command line tool, which can be used to perform URL operations and transfer
information. cURL functions as an HTTP client can send HTTP requests to the server and
receive responses. cURL is applicable to API debugging.

e (Code
You can invoke APIs by coding to assemble, send, and process requests.

Mozilla and Google provide graphical browser plug-ins for REST clients to send and
process requests.

2.3.3 Image Tagging API
Function overview:

Natural images have rich semantic meanings because one image contains various tags.
Image tagging can recognize hundreds of scenarios and thousands of objects and their
properties in natural images, making intelligent album management, image retrieval
and classification, and scenario- or object-based advertising more intuitive. After the
image to be processed is uploaded, image tagging will return the tag and confidence

score.
URI
URI format: POST /v1.0/image/tagging
Request
Table 2-3 Request parameter description
Mandatory .
Parameter or Optional Type Description

image Set either String | Image data, which is encoded based on Base64.

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 42
this The size of data encoded based on Base64
parameter cannot exceed 10 MB. The image resolution of
or url. the short edges must be greater than or equal

to 15 pixels, and that of the long edges cannot
exceed 4096 pixels. The supported image
formats include JPG, PNG, and BMP.

Set either URL of the image file. Currently, this URL can

url this String be accessed by temporarily authorization on
parameter HUAWEI CLOUD OBS or anonymous and public
or image. authorization.

Language type of the returned tag. The default
language Optional String | value is zh, which indicates Chinese. ‘en’ can be
chosen as English.

Maximum number of tags that can be
limit Optional Integer | returned. The default value is -1, indicating that
all tags are returned.

Threshold (0 to 100) of the confidence score.
The tags whose confidence score is lower than
the threshold will not be returned. The default

value is 0.

threshold Optional Float

Response
Table 2-4 Response parameter description
Parameter Type Description
Content of the image tag returned when the invoking
succeeds.
result JSON])]]
The parameter is not included when the API invoking
fails.
tags List List of tags.
confidence Float Confidence score ranging from 0 to 100.
tag String Tag name.
Error code returned when the invoking fails. For details,
) see Error Codes.
error_code String) i))
The parameter is not included when the API invoking
succeeds.
Error message returned when the API invoking fails.
error_msg String The parameter is not included when the API invoking
succeeds.

https://support.huaweicloud.com/en-us/api-image/image_03_0010.html

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 43

Returned values

e Normal
200
® Failed
Table 2-5 Returned Value parameter description
Returned Value Description
The request cannot be understood by the server due to
malformed syntax. A client shall not submit the request
400 again unless the request is modified.
The request parameters are incorrect.
401 The request requires user authentication.
403 No permission to perform this operation.
The request failed because the requested resource could
404
not be found on the server.
500 The server encountered an unexpected fault which
prevented it from processing the request.

2.4 Procedure

In this experiment, you need to download the SDK for image recognition from the HUAWEI
CLOUD service platform and use either of the following two methods to access the SDK.
One method is to submit a RESTful service request by invoking the underlying APIs
encapsulated by the SDK based on the AK/SK for identity authentication. The other method
is to simulate the browser to submit a RESTful request by obtaining the user's token
information. The procedure is as follows.Procedures:

2.4.1 Applying for a Service

Step 1 Open the HUAWEI CLOUD official website. https://www.huaweicloud.com/en-us/

e

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Page 44

HUAWEI CLOUD

Hong Kong Data Center Now Available

R Object Storage Service 4 Elastic Cloud Server ModelArts ‘ RDS for MySQL
= <§ ﬂ Secure | Efficient | Easy: g Thre: py Backup | Full-ECS g Development Platform for Al ri Stable Performance for 5000
Recov Developers Concurrent Connections

Figure 2-1 HUAWEI CLOUD official website

Step 2 Log in to the system using a HUAWEI CLOUD account and choose image recognition.

Products Solutions

Support

Step 3 Click Use Now:

Essential Platform

ModelArts

Huawei HiLens

Graph Engine Service
Video Ingestion Service

Big Data

DAYU

Data Ingestion Service
Cloud Data Migration
Cloud Stream Service
MapReduce Service
CloudTable Service
Data Warehouse Service
Cloud Search Service
Data Lake Factory
Data Lake Visualization
Recommender System
Log Analysis Service

Visual Cognition

Face Recognition
Human Analysis
Image Recognition

Celebrity Recognition
ImageSearch

Content Moderation
Moderation (Image)
Optical Character Recognition
General OCR

Card OCR

Receipt OCR

Domain OCR

Custom OCR
Moderation (Video)
Video Content Tagging

Video Content Recognition

Figure 2-2 Image label under El

Speech and Semantics

Question Answering Bot

Task-oriented Conversational
Bot

Speech Analytics
CBS Customization

Natural Language Processing
Fundamentals

Language Understanding
Language Generation
NLP Customization
Machine Translation
Moderation (Text)

Automatic Speech
Recognition

Text To Speech
Real-Time ASR
ASR Customization

Text To Speech
Customization

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

b HUAWEI CLOUD Products Solutions Enterprise Intelligence Support

Image Tagging

Image Tagging uses deep leamning technologies to accurately identify objects, scenes, and
concepts in images using a pool of visual content tags.

Fees start as low as per API call for commercial services.

Try Now Get Discounts Get Started | SDKs

Figure 2-3 image recognition main window

Page 45

Step 4 Select Beijing 4 and enable the corresponding service. In this experiment, you need to

enable Image Tag.

HUAWEI CLOUD

Image Recognition ‘ @ We would much appreciate if you could complete our questionnaire on Image Recognition. Your feedback will help us provide a better user experience

Service List

| service Management

Service Management @)

0BS Authorization

If you need to use the data stored on OBS for Image Recognition, enable OBS authorization.

My Services

“ () Celebrity Recognition Learn more =) Image Tagging Leam more

Figure 2-4 Provisioning a Service

2.4.2 (Optional) Downloading the image recognition SDK

Learn more

In this lab, the SDK is used as a service, which has been integrated in subsequent data sets.

You can choose whether to use the SDK to set up an environment independently.

Step 1 Downloading the image recognition SDK Software Package and Documents

Link: https://developer.huaweicloud.com/en-us/sdk?IMAGE

https://developer.huaweicloud.com/en-us/sdk?IMAGE

e

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 46

(= Image Recognition (Image) Java SDK r@ Image Recognition (Image) Python SDK
=

SDK Download SDK Guide SDK V3 Beta SDK Download GitHub Download SDK V3 Beta

f'@W Image Recognition (Image) PHP SDK f'@W Image Recognition (Image) Android SDK
=J =J
SDK Download GitHub Download SDK Download GitHub Download

f_@W Image Recognition (Image) Node.js SDK

SDK Download GitHub Download

Figure 2-5 HUAWEI CLOUD SDK

Step 2 Decompress the image_sdk folder in the package to the project folder.

data

| image _sdk |

& asr_bgm_aksk_demo.py 673
& asr_bgm_token_demo.py 836
& asr_bgm_token_with_proxy_demo.py 1,061
& celebrity recognition_aksk_demo.py 997
& celebrity_recognition_token_demo.py 1,107
& dark_enhance_aksk_demo.py 769
& dark_enhance_token_demo.py 900
& image_defog_aksk_demo.py 757
& image_defog_token_demo.py 888
& image_tagging_aksk_demo.py 957

Figure 2-6 Move to Project Folder

2.4.3 Use AK/SK to perform image tag management. (Skip this

step if you alrealy have ak/sk)

Obtain the access key (AK) and secret access key (SK). The AK and SK are the keys used to
access your own account. The AK and SK are required for calling image recognition APIs.
If you have obtained the AK and SK, skip this step.

Step 1 Open the HUAWEI CLOUD official website. https://www.huaweicloud.com/en-
us/Log in to the console.

e

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 47

HUAWEI CLOUD Products Solutions Enterprise Intelligence Support thEgL Console szx&as 5

HUAWEI CLOUD

Hong Kong Data Center Now Available

P B

Figure 2-7 HUAWEI CLOUD official website

Step 2 Click My Credential under My Account.

7WX635163

0 Auto Scaling 0 Elastic Volume Service 0

0 Elastic Load Balance 0 Elastic IP 0

0

Figure 2-8 consoles

Step 3 Click Access Key to add an access key. After you perform the steps in, the system
automatically generates a .csv file. The key is stored in the file. Keep the file secure.

Access Keys @

My Credentials

‘ @ Access keys can be downloaded only once after being generated. Keep them secure, change them periodically, and do not share them with anyone.

API Credentials

AccessKey ID |= Description = Created = Status = Operation

NRPNSY1QUDIRFQGV7IEG Mar 02, 2019 09:38:02 GMT+08:00 Enabled Modify | Disable = Delete

Figure 2-9 AK/SK configuration

2.4.4 Opening the Jupyter Notebook

You can use the local environment (python 3.6 or 3.7 are recommended) or HUAWEI
CLOUD Modelarts Tensorflow 1.8 kernel environment.

Annotation: tensorflow 1.8 kernel environment is not used to only to make sure the code
can the code run correctly.

S

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 48

2.4.5 Downloading a Dataset

Dataset andSDKis integrated into a compressed file. The link is as follows: https://huawei-
ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
Al%?20EI%20Developer/V2.1/huaweiei_Alphones.zip

After the download is complete, decompress the package to the related folder.

2.4.6 Initialize Image Tag Service

Step 1

Importing Related Libraries

import the package from the image recognition package, image tag, and tool package.
from image_sdk.utils import encode_to_base64

from image_sdk.image_tagging import image_tagging_aksk

from image_sdk.utils import init_global_env

Invoke JSON to parse the returned result.

import json

Packages of operating system files or folders
import os

import shutil

Packages related to image processing and display

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

Step 2

Set related parameters.

init_global_env('cn-north-4")

Prepare AK and SK.
app_key = "** Change it to your own ak***'
app_secret = "** Change it to your own sk***'

Step 3

Using network image to test

Use the network image test.

demo_data_url = 'https://sdk-obs-source-save.obs.cn-north-4.myhuaweicloud.com/tagging-normal.jpg'
call interface use the url

result = image_tagging_aksk(app_key, app_secret, "', demo_data_url, 'en’, 5, 30)

Convert the value to a Python dictionary.
tags = json.loads(result)
print(tags)

Output:

{'result": {'tags": [{'confidence" '98.38', 'i18n_tag" {'en" 'Person', 'zh" 'A'}, 'tag" 'Person’,
'type': 'object'}, {'confidence": '97.12, 'i18n_tag": {'en": 'Children’, 'zh": 'JLE&"}, 'tag': 'Children’,
'type': 'object'}, {'confidence": '96.39', 'i18n_tag": {'en": 'Sandbox', 'zh" '({t) LELTAY) IS,
'tag": 'Sandbox', 'type': 'scene'}, {'confidence': '89.28', 'i18n_tag": {'en': 'Play’, 'zh": 'Ix2Z'}, 'tag":

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 49
'Play’, 'type': 'object'}, {'confidence': '87.99', 'i18n_tag" {'en": 'Toy', 'zh": 'ItH'}, 'tag": 'Toy',
'type": 'object'}]}}

2.4.7 Labeling related photos

Step 1 Mark a photo

Determine the location of the electronic album.
file_path ='data/'
file_name = 'pic3.jpg'

Save the image label dictionary.
labels={}

Image marking

result = image_tagging_aksk(app_key, app_secret, encode_to_base64(file_path + file_name), ",'en’, 5,
60)

Parse result.

result_dic = json.loads(result)

Save the data to the dictionary.

labels[file_name] = result_dic['result']['tags']

print(labels)

Output:

{'pic3.jpg": [{'confidence": '95.41', 'i18n_tag" {'en" 'Lion', 'zh": 'JJi+%'}, 'tag" 'Lion', 'type"
'object'}, {'confidence": '91.03, 'i18n_tag": {'en": 'Carnivora', 'zh': "€ B'}, 'tag" 'Carnivora’,
'type": 'object'}, {"confidence': '87.23', 'i18n_tag": {'en": 'Cat', 'zh": 'J§'}, 'tag" 'Cat', 'type"
'object'}, {'confidence": '86.97', 'i18n_tag": {'en": 'Animal, 'zh": '51#)'}, 'tag" 'Animal’, 'type":
'object'}, {'confidence": '74.84', 'i18n_tag" {'en": 'Hairy', 'zh": 'EEE"}, 'tag" 'Hairy', 'type":
'object'}]}

Step 2 Mark all photos in the data folder.

Determine the location of the electronic album.
file_path ='data/'

Save the image label dictionary.

labels = {}

items = os.listdir(file_path)
for i in items:
Check whether the file is a file, not a folder.
if os.path.isfile:
HUAWEI CLOUD EI supports images in JPG, PNG, and BMP formats.
if i.endswith('jpg') or i.endswith('jpeg’) or i.endswith('bmp') or i.endswith('png"):
Label images.
result = image_tagging_aksk(app_key, app_secret, encode_to_base64(file_path + i),
"'en', 5, 60)
Parse the returned result.
result_dic = json.loads(result)
Align the file name with the image.
labels[i] = result_dic['result']['tags']

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 50

Display the result.
print(labels)

Output:

{'picl.jpg": [{'confidence" '89.73', 'i18n_tag" {'en": 'Running’, 'zh" '#i{'}, 'tag" 'Running’,
'type": 'object'}, {'confidence": '88.34", 'i18n_tag": {'en": 'Person’, 'zh":' \'}, 'tag': 'Person’, 'type":
'object'}, {'confidence": '87.59', 'i18n_tag": {'en": 'Motion', 'zh": "&zf1'}, 'tag": 'Motion', 'type":
'object'}, {'confidence': '87.24', 'i18n_tag": {'en": 'Sunrise', 'zh": '"H'}, 'tag": 'Sunrise', 'type":
'object'}, {'confidence" '86.68', 'i18n_tag': {'en": 'Outdoors', 'zh": 'F4}, 'tag" 'Outdoors’,
"type': 'object'}], 'pic10.jpg": [{'confidence': '85.83', 'i18n_tag": {'en": 'Flower', 'zh": '{Es'}, 'tag":
'Flower', 'type': 'object'}, {'confidence": '84.33', 'i18n_tag" {'en" 'Plant', 'zh': '{8%'}, 'tag"
'Plant’, 'type": 'object'}, {'confidence': '83.47', 'i18n_tag": {'en": 'Red', 'zh": 'ZI&'}, 'tag" 'Red’,
'type': 'object'}, {'confidence': '79.92', 'i18n_tag" {'en": 'Flower', 'zh": '{£'}, 'tag": 'Flower", 'type"
‘'object'}, {'confidence': '78.67', 'i18n_tag" {'en" 'Flowers and plants', 'zh": '#&#'}, 'tag"
'Flowers and plants', 'type': 'object'}], 'pic2.jpg": [{'confidence': '99.61', 'i18n_tag" {'en": 'Cat’,
'zh': '§'}, 'tag': 'Cat’, 'type": 'object'}, {'confidence": '99.22', 'i18n_tag": {'en": 'Carnivora’, 'zh":
"B}, 'tag": 'Carnivora’, 'type': 'object'}, {'confidence': '88.96', 'i18n_tag': {'en": 'Field road',
'zh': "HEFE8'}, 'tag" 'Field road', 'type" 'scene'}, {'confidence" '86.12', 'i18n_tag" {'en"
'‘Animal’, 'zh': 'z1¥0'}, 'tag": 'Animal’, 'type': 'object'}, {'confidence': '83.33, 'i18n_tag": {'en"
'Mammal, 'zh": "THZE0¥'}, 'tag: 'Mammal', 'type": 'object'}], 'pic3.jpg": [{'confidence":
'95.41", 'i18n_tag" {'en": 'Lion’', 'zh": i}, 'tag": 'Lion’, 'type": 'object'}, {'confidence": '91.03,
'i18n_tag": {'en": 'Carnivora’, 'zh": '"EABR'}, 'tag": 'Carnivora’, 'type": 'object'}, {'confidence':
'87.23', 'i18n_tag": {'en": 'Cat’, 'zh": &'}, 'tag" 'Cat', 'type" 'object'}, {'confidence': '86.97',
'i18n_tag" {'en": 'Animal’, 'zh" 'zh#7'}, 'tag" 'Animal’, 'type": 'object'}, {'confidence" '74.84',
'i18n_tag": {'en": 'Hairy', 'zh':'FEEH'}, 'tag": 'Hairy', 'type": 'object'}], 'pic4.jpg": [{'confidence'":
'92.35', 'i18n_tag" {'en: 'Retro', 'zh": '€}, 'tag" 'Retro', 'type" 'object'}, {'confidence":
'91.39, 'i18n_tag": {'en": 'Design’, 'zh" 'ig1t'}, 'tag" 'Design', 'type" 'object'}, {'confidence":
'86.89', 'i18n_tag" {'en": 'Home furnishing', 'zh'": '5X[&'}, 'tag": 'Home furnishing', 'type"
'object'}, {'confidence": '86.43", 'i18n_tag": {'en": 'Bow window indoor', 'zh": 'SH&E/=AX'}...
(omit)

Step 3 Save the marking result.

Save the label dictionary to a file.

save_path = "./label'

If the folder does not exist, create a file.

if not os.path.exists(save_path):
os.mkdir(save_path)

Create a file, write the file, and close the file.
with open(save_path + '/labels.json', 'w+') as f:
f.write(json.dumps(labels))

2.4.8 Making Dynamic Album by Using Marking Results

Step 1 Reopen the saved labeling result.

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 51

Open the saved file.

label_path = 'label/labels.json'

with open(label_path, 'r') as f:
labels = json.load(f)

Step 2 Use keywords to search (the keyword is Flower).

Search keyword
key_word = input('Please enter a keyword.")

Set the trusted percentage.

threshold = 60

Set a collection (the collection contains only one element).
valid_list = set()

Traverse the dictionary in labels to obtain all image names that contain keywords.
for k,v in labels.items():
for item in v:
if key_word in item['tag'] and float(item['confidence']) >= threshold:
valid_list.add (k)

Display the result.
valid_list = list(valid_list)
print(valid_Llist)

Output:

Please enter a keyword.
['pic10.jpg’, 'pic7.jpg', 'pic5.jpg', 'pic9.jpg']
Step 3 Display related images.

Set the canvas size.
plt.figure(24)

Arrange each image on the canvas in sequence.
for k,v in enumerate(valid_list[:9]):

pic_path = 'data/' + v

img = Image.open(pic_path)

img = img.resize((640, 400))

plt.subplot(331 + k)

plt.axis(‘'off")

plt.imshow(img)

plt.show()

Output:

HUAWEI

HCIP-AI-EI Developer V2.0 Image Processing Lab Guide

Step 4 Creating a GIF Image

Page 52

Generate a temporary folder.
if not os.path.exists('tmp'):
os.mkdir('tmp")

Convert all searched images into GIF format and store them in a temporary folder.

gif_list =[]

for k, pic in enumerate(valid_list):
pic_path = 'data/' + pic
img = Image.open(pic_path)
img = img.resize((640, 380))
save_name = 'tmp/'+ str(k) + '.gif'
img.save(save_name)
gif_list.append(save_name)

Open all static GIF images.

images=[]

for i in gif_list:
pic_path =i
images.append(Image.open(pic_path))

Save the GIF image.
images[0].save(‘Album Animation.gif’,
save_all=True,
append_images=images[1:],
duration=1000,
loop=0)

Release the memory.

del images

Delete the temporary folder.
shutil.rmtree('tmp")

print('GIF album created.")

Output:
GIF album created.

S

HUAWEI HCIP-AI-EI Developer V2.0 Image Processing Lab Guide Page 53

2.4.9 Automatically classify photos with labels

Step 1 Automatic classification

Open the saved labels file.

label_path = 'label/labels.json'

with open(label_path, 'r') as f:
labels = json.load(f)

Obtain the file category with the highest confidence.
classes =[[v[0]['tag'] k] for k, v in labels.items()]

for cls in classes:
if not os.path.exists('data/' + cls[0]):
os.mkdir('data/'+ cls[0])
Copy the corresponding image.
shutil.copy(‘data/'+ cls[1], 'data/'+ cls[0]+ '/'+ cls[1])

print('Copying completed.')

Output:
Copying completed

2.5 Experiment Summary

This experiment describes how to use Image Tag service to perform operations related to
electronic albums. First, this experiment describes how to enable services under image
recognition. Second the experiment focuses on how to use Image Tag to label photos,
search for albums, and create dynamic albums, automatically classify photos and display
related results. In addition, we have practiced and performed basic operations on the image
recognition libraries of HUAWEI CLOUD ElI service.

Huawei Al Certification Training

HCIP-AI-El Developer

Speech Processing Lab Guide

ISSUE:2.0

NS

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

Q) , . .
wawe and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of
their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made
between Huawei and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided "AS IS" without warranties,
guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has
been made in the preparation of this document to ensure accuracy of the contents, but
all statements, information, and recommendations in this document do not constitute
a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129
People's Republic of China

Website: http://e.huawei.com

Huawei Prorietary and Confidential
Copyright © Huawei Technologies Co,Ltd

http://e.huawei.com/

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 1

Huawei Certificate System

Huawei's certification system is the industry's only one that covers all ICT technical
fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT
technical architecture featuring cloud-pipe-device synergy. It provides three types of
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT
Vertical Certification.

To meet ICT professionals' progressive requirements, Huawei offers three levels of
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional
(HCIP), and Huawei Certified ICT Expert (HCIE).

HCIP-AI-El Developer V2.0 certification is intended to cultivate professionals who
have acquired basic theoretical knowledge about image processing, speech processing,
and natural language processing and who are able to conduct development and
innovation using Huawei enterprise Al solutions (such as HUAWEI CLOUD El), general
open-source frameworks, and ModelArts, a one-stop development platform for Al
developers.

The content of HCIP-AI-EIl Developer V2.0 certification includes but is not limited to:
neural network basics, image processing theory and applications, speech processing
theory and applications, natural language processing theory and applications,
ModelArts overview, and image processing, speech processing, natural language
processing, and ModelArts platform development experiments. ModelArts is a one-stop
development platform for Al developers. With data preprocessing, semi-automatic data
labeling, large-scale distributed training, automatic modeling, and on-demand model
deployment on devices, edges, and clouds, ModelArts helps Al developers build models
quickly and manage the lifecycle of Al development. Compared with V1.0, HCIP-AI-EI
Developer V2.0 adds the ModelArts overview and development experiments. In
addition, some new El cloud services are updated.

HCIP-AI-El Developer V2.0 certification proves that you have systematically
understood and mastered neural network basics, image processing theory and
applications, speech processing theory and applications, ModelArts overview, natural
language processing theory and applications, image processing application
development, speech processing application development, natural language processing
application development, and ModelArts platform development. With this certification,
you will acquire (1) the knowledge and skills for Al pre-sales technical support, Al
after-sales technical support, Al product sales, and Al project management; (2) the
ability to serve as an image processing developer, speech processing developer, or
natural language processing developer.

Page 2

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide

25 an SSaNY uoissiwsues |
31eDOSSY || PAYII) IIMeNnH NGS NYIM wodreleq e
- UOI C_
Vi e
\Q(UII\ Sunndwo) wabinjaiu) Beiols aunpnaseyul 1)
‘ /,
» J2u3) eleg
JEUOISS3401d 1D PaYILa) Bmeny
loa
@ 21035 pnop bupndwo) pnop
uonedyna)
8assned D35 pue uuopeld
UOREDIUNWILLIOD)
s - uorsiA JuabyRau) 10| v eleq big
K33yes ongng dueuly UORBIYIII) WA 1D

uoned1II) IaMenH

IIMVNH 7§ 0110J3104 uoned|iud) lsmenH

S

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 3

About This Document

Overview

This document is an HCIP-AI certification training course. It is intended for trainees who
are preparing for HCIP-Al tests or readers who want to know about Al basics. After
understanding this document, you will be able to perform speech processing, for example,
speech file pre-processing, speech input, text to speech (TTS), and automatic speech
recognition (ASR), and carry out development. To implement the ASR operations, we use
the TensorFlow framework to construct the deep neural network, such as Seq2Seq model.

Description

This document contains three experiments and it involves speech file pre-processing,
Huawei-based TTS and ASR. It aims to improve the practical development capability of Al
speech processing.

® Experiment 1: helps understand Python-based speech file pre-processing.
® Experiment 2: helps understand how to implement TTS through HUAWEI CLOUD EI.
® Experiment 3 helps understand Tensorflow-based ASR.

Background Knowledge Required

® Have basic Python language programming skills.
® Have basic knowledge in speech processing.

® Have basic knowledge in TensorFlow and Keras.
°

Have basic knowledge in deep neural network.

Experiment Environment Overview
® Windows (64-bit)
® Anaconda3 (64-bit) (Python 3.6.4 or later)
® Jupyter Notebook
® Link for downloading the experiment data:

https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
Al%20EI%20Developer/V2.1/speech.rar

® Speech Pre-processing.
® TTS based on HUAWEI CLOUD EI.
® ASR based on Seq2Seq

https://data-certification.obs.cn-east-2.myhuaweicloud.com/ENG/HCIP-AI%20EI%20Developer/V2.1/speech.rar
https://data-certification.obs.cn-east-2.myhuaweicloud.com/ENG/HCIP-AI%20EI%20Developer/V2.1/speech.rar

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 4

Contents
ADbOUL ThiS DOCUMENTeiiiiirericintntneneststeessssssssssesssssssssssssssssssssssssssessssssssssssssass 3
OVEIVIBW ...ttt ettt sese ettt sttt st b st s st b st e s e et s et b st atestae b astaeen 3
DIESCIIPLION ettt ettt st st st st sttt ettt bbbt 3
Background Knowledge REGUITE ...ttt ts i es st sttt 3
EXperiment ENVIFONMENT OVEIVIEWc.cvciriiireinieireiniciresseetsesste st asessesstsesstasese st ssesstasssesstasssesesasssesetasssesesssssesssens 3
T Speech Pre-proCessing.......iieniininninnerninsiensnsensnnssesses 5
1.1 INEFOAUCTION ettt ea st bbbt e et ettt bbbt 5
1101 ADOUT TNIS LA ettt bbbt s bbb s ettt st 5
1.1.2 ODJECLIVES ..ottt ssss s s sss st s st s s s s s s s s e s s s se s s e bbb bbb e s s snsssssssssssnssnnsensnsas 5
1.1.3 KNOWLEAGE REGUITE. ...ttt ettt sttt ss st s s bbb s en s s ensssensensnsas 5
1.2 INSTALliNG RELALEA MOTULES ...ttt sss s ss sttt s s s s s s ssnessnssnsnsns 6
1.3 PrOCERAUIE ...ttt sttt sttt e bbb s bbb bbbt bbbt 7
T4 SUNMIMATY ottt ses st sese et ses et ses st sese et se st st st st st st st se bbb se st st bt se bbb se bbb se bbb se bbb sesesaetsesetacs 15
2 TTS Based on HUAWEI CLOUD El ... ieeeceeeceeeceecneeceeesseeesneecseessssssssesssesssesssnsenns 16
2.7 INEFOAUCTION ..ttt sttt ebseb st bbb etk s b bbbttt bbb seen 16
211 ADOUL ThiS LD ottt ettt bt st 16
2.1.2 ODJECLIVES ...ttt sttt sas st s s s s s as bbb bbb s b e s s sn s e b en s st ensnsas 16
2.2 Preparing the EXperiment ENVIFONMIENT......cccirriieririeenieiseesisisesssssssssssssssssssesssssssssssssssssssssssssssssssesssssssesssssssesssses 16
2.3 Obtaining and configuring PYTRON SDK........rrnenrrsssirsisssisssenes 17
2.4 PPOCEAUIE ...ttt ettt st et tsseb s bbb s et bbbt s b bbbttt bbbt eeen 18
2471 TTS ettt ts st s b s b e R e R bbbt 18
2.5 SUIMMATY ettt sas s sas sttt s e e e s e et a et aa e s saesessens 20
3 Speech Recognition Based On S€Q2Se(.......cccocrrurrirnurnrunisnnssesssssanssensssssssssssssasssasssssnes 21
BT INEFOAUCTION ettt et s e b s s ettt 21
31T ADOUL TS LAD ettt stttk ettt bbb 21
3.1.2 ODJECLIVES ..ottt s s s ss s as bbb bbb s bt s bbb e en s st ensnsas 21
3.1.3 KNOWILEAGE REQUITEM........eoeeeeeereerieirieie sttt s s s s s ss s sttt ss st sss s s sassssssssssssssssssnssanes 21
3.2 PrOCEAUIE ...ttt sttt b ek bbbttt bbbt eeen 21

3.3 SUMIMIAIY ittt ettt ettt st ettt et st ettt et s et ettt sttt e bt et s bt s b et aesstaesesntasans 27

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 5

Speech Preprocessing

1.1 Introduction

1.1.1 About this lab

Speech is a non-stationary time-varying signal. It carries various information. Information
including in speech needs to be extracted for speech processing, for example, speech
encoding, TTS, speech recognition, and speech quality enhancement. Generally, speech
data is processed to analyze speech signals and extract characteristic parameters for
subsequent processing or to process speech signals. For example, background noise is
suppressed in speech quality enhancement to obtain relatively "clean" speech. In TTS,
splicing and smoothing need to be performed for speech segments to obtain synthetic
speech with higher subjective speech quality. Applications in this aspect are also created
on the basis of analysis and extraction of speech signal information. In a word, the purpose
of speech signal analysis is to conveniently and effectively extract and express information
carried in speech signals.

Based on types of analyzed parameters, speech signal analysis can be divided into time-
domain analysis and transform-domain (frequency domain and cepstral domain) analysis.
The time-domain analysis method is the simplest and the most intuitive method. It directly
analyzes time-domain waveforms of speech signals and extracts characteristic parameters,
including short-time energy and average amplitude of speech, average short-time zero-
crossing rate, short-time autocorrelation function, and short-time average amplitude
difference function.

This experiment provides analysis based on speech data attributes of the short-sequence
speech data set and related characteristic attributes to have a more in-depth and
comprehensive understanding of speech data.

1.1.2 Objectives

Upon completion of this task, you will be able to:
® Check the attributes of speech data.

® Understand the features of speech data.

1.1.3 Knowledge Required

This experiment requires knowledge in two aspects:
® Syntactical basis of the Python language and hands-on operation capability.

® Understanding of the related wave framework.

e

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 6

1.2 Installing Related Modules

Install the Python module.

Click Start in the lower left corner of the Windows OS. A menu list is displayed.

3D Viewer

Acrobat Reader DC

Adobe Acrobat DC

Adobe Acrobat Distiller DC

Alarms & Clock

Anaconda3 (64-bit)
Anaconda Navigator

™1 Anaconda Prompt

Jupyter Notebook

Jupyter Notebook (python3.6)

. Reset Spyder Settings

@ Spyder

Figure 1-1 Anaconda Prompt

Click Anaconda Prompt. The Anaconda system is displayed.

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 7

Chase» C:sllserssy

Figure 1-2 Anaconda Prompt

Install the wave module. Enter pip install wave. The result is as follows:
Chase? C:NUsers \yux516714>pip install wave
;ollecting wave
Installing collected packages: wave

uccessfully installed wave-08.08.2

(hase)

Figure 1-3 Install wave

Install other required Python frameworks by following the similar steps.

1.3 Procedure

This experiment is performed based on the wave framework. Main steps include:
® View audio data attributes.

® View audio data conversion matrix

® View the audio spectrum.
°

View the audio waveform.

Step 1 Import related modules
Code:

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 8

import wave as we

import matplotlib.pyplot as plt
import numpy as np

from scipy.io import wavfile
import matplotlib.pyplot as plt
from matplotlib.backend_bases import RendererBase
from scipy import signal

from scipy.io import wavfile
import os

from scipy.fftpack import fft
import warnings
warnings.filterwarnings("ignore")

Step 2 View basic attributes of the wav file

Code:

filename = 'data/thchs30/train/A2_0.wav '
WAVE = we.open(filename)
Output information (sound channel, sampling width, frame rate, number of frames, unique ID, and
lossless information)
for item in enumerate(WAVE.getparams()):

print (item)
a = WAVE.getparams().nframes # Total number of frames
print(a)
f = WAVE.getparams().framerate # Sampling frequency
print("Sampling frequency: " f)
sample_time = 1/f # Interval of sampling points
time = a/f # Sound signal length
sample_frequency, audio_sequence = wavfile.read(filename)
print (audio_sequence,len(audio_sequence))
x_seq = np.arange(0,time,sample_time)
print(x_seq,len(x_seq))

Result:

o, 1)

(1,2)

(2, 16000)

(3, 157000)

(4, 'NONE')

(5, 'not compressed')

157000

Sampling frequency: 16000

[-296 -424 -392 ... -394 -379 -390] 157000
[0.0000000e+00 6.2500000e-05 1.2500000e-04 ... 9.8123125e+00 9.8123750e+00
9.8124375e+00] 157000

Step 3 View the waveform sequence of the wav file

Code:

| plt.plot(x_seqg,audio_sequence, 'blue')

S

HUAWEI

Step 4
Code:

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide

Page 9

plt.xlabel('time (s)')

plt.show()
Result:
20000 4
10000 -
0 -
—10000
—20000

4

time (s}

Figure 1-4 The waveform sequence of the wav file

Obtain file name

audio_path = 'data/train/audio/'

pict_Path = 'data/train/audio/'

samples =[]

Verify that the file exists, if not here, create it

if not os.path.exists(pict_Path):
os.makedirs(pict_Path)

subFolderList = []
for x in os.listdir(audio_path):
if os.path.isdir(audio_path +'/' + x):
subFolderList.append (x)
if not os.path.exists(pict_Path +'/' + x):
os.makedirs(pict_Path +'/'+ x)

View the name and number of sub-files
print("----list----:",subFolderList)
print("----len----:",len(subFolderList))

Result:

----list----: ['bed', 'bird', 'cat’, 'dog', 'down’, 'eight’, 'five', 'four’, 'go', 'happy', 'house’, 'left', 'marvin’,
'nine’, 'no’, 'off', 'on', 'one’, 'right', 'seven’, 'sheila’, 'six', 'stop’, 'three’, 'tree’, 'two', 'up', 'wow', 'yes',

'zero', '_background_noise_']
----len----: 31

S

HUAWEI

Step 5

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide

Count the number of speech files in each subfolder

Code:

Page 10

sample_audio = []

total =0

for x in subFolderList:
Get all wav files

all_files = [y for y in os.listdir(audio_path + x) if "wav' in y]

total += len(all_files)

sample_audio.append(audio_path + x + '/'+ all_files[0])
View the number of files in each subfolder

print('%s : count: %d ' % (x, len(all_files)))
View the total number of wav files
print("TOTAL:",total)

Result:

bed : count: 10
bird : count: 15
cat : count: 17
dog : count: 20
down : count: 36
eight : count: 16
five : count: 16
four : count: 22
go : count: 18
happy : count: 16
house : count: 15
left : count: 20
marvin : count: 19
nine : count: 14
no : count: 16
off : count: 20
on : count: 11
one : count: 18
right : count: 22
seven : count: 20
sheila : count: 17
six : count: 15
stop : count: 12
three : count: 19
tree : count: 14
two : count: 12
up : count: 10
wow : count: 18
yes : count: 17
zero : count: 20
_background_noise_ : count: 6
TOTAL: 521

Step 6

View the first file in each sub-folder

Code:

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide

Page 11

for x in sample_audio:
print(x)

Result:

data/train/audio//bed/00f0204f_nohash_0.wav
data/train/audio//bird/00b01445_nohash_0.wav
data/train/audio//cat/00b01445_nohash_0.wav
data/train/audio//dog/fc2411fe_nohash_0.wav
data/train/audio//down/fbdc07bb_nohash_0.wav
data/train/audio//eight/fd395b74_nohash_0.wav
data/train/audio//five/fd395b74_nohash_2.wav
data/train/audio//four/fd32732a_nohash_0.wav
data/train/audio//go/00b01445_nohash_0.wav
data/train/audio//happy/fbf3dd31_nohash_0.wav
data/train/audio//house/fcb25a78_nohash_0.wav
data/train/audio//left/00b01445_nohash_0.wav
data/train/audio//marvin/fc2411fe_nohash_0.wav
data/train/audio//nine/00b01445_nohash_0.wav
data/train/audio//no/fe1916ba_nohash_0.wav
data/train/audio//off/00b01445_nohash_0.wav
data/train/audio//on/00b01445_nohash_0.wav
data/train/audio//one/00f0204f_nohash_0.wav
data/train/audio//right/00b01445_nohash_0.wav
data/train/audio//seven/0a0b46ae_nohash_0.wav
data/train/audio//sheila/00f0204f_nohash_0.wav
data/train/audio//six/00b01445_nohash_0.wav
data/train/audio//stop/0ab3b47d_nohash_0.wav
data/train/audio//three/00b01445_nohash_0.wav
data/train/audio//tree/00b01445_nohash_0.wav
data/train/audio//two/00b01445_nohash_0.wav
data/train/audio//up/00b01445_nohash_0.wav
data/train/audio//wow/00f0204f_nohash_0.wav
data/train/audio//yes/00f0204f_nohash_0.wav
data/train/audio//zero/0ab3b47d_nohash_0.wav
data/train/audio//_background_noise_/doing_the_dishes.wav

Step 7

Create a spectrum processing function

Code:

def log_specgram(audio, sample_rate, window_size=20,
step_size=10, eps=T1e-10):

nperseg = int(round(window_size * sample_rate / 1e3))

noverlap = int(round(step_size * sample_rate / 1e3))

fregs, _, spec = signal.spectrogram(audio,
fs=sample_rate,
window='hann’,
nperseg=nperseg,
noverlap=noverlap,
detrend=False)

return fregs, np.log(spec.T.astype(np.float32) + eps)

Step 8

Visualize one spectrum of multiple samples

Az

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 12

Code:

fig = plt.figure(figsize=(20,20))

for i, filepath in enumerate(sample_audio[:16]):
Make subplots
plt.subplot(4,4,i+1)

pull the labels
label = filepath.split('/")[-2]
plt.title(label)

create spectrogram
samplerate, test_sound = wavfile.read(filepath)
_, spectrogram = log_specgram(test_sound, samplerate)

plt.imshow(spectrogram.T, aspect="auto', origin='lower")
plt.axis('off")
plt.show()

Result:

Az

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 13

Figure 1-5 One spectrum of multiple samples

Step 9 Visualize multiple spectrums of one sample

Code:

yes_samples = [audio_path + 'yes/' +y for y in os.listdir(audio_path + 'yes/')[:9]]
fig = plt.figure(figsize=(10,10))

for i, filepath in enumerate(yes_samples):
Make subplots
plt.subplot(3,3,i+1)

pull the labels
label = filepath.split('/")[-1]
plt.title(""yes": '+label)

create spectrogram
samplerate, test_sound = wavfile.read(filepath)
_, spectrogram = log_specgram(test_sound, samplerate)

plt.imshow(spectrogram.T, aspect="auto', origin='lower")
plt.axis(‘'off")
plt.show()

Result:

"yes": 004ae714_nohash_0.wav "yes": 004ae714_nohash_l.wav "yes": 00f0204f _nohash_0.wav

Az

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 14

Figure 1-6 Multiple spectrums of one sample

Step 10 Visualize the waveforms of multiple samples

Code:

fig = plt.figure(figsize=(10,10))

for i, filepath in enumerate(sample_audio[:16]):
plt.subplot(4,4,i+1)
samplerate, test_sound = wavfile.read(filepath)
plt.title(filepath.split('/") [-2])

plt.axis(‘'off")
plt.plot(test_sound)
plt.show()
Result:
bad bird cat
eight
happy house
marvin nine

S R

Figure 1-7 The waveforms of multiple samples

Step 11 Visualize multiple waveforms of one sample

Code:

| fig = plt.figure(figsize=(8,8))

e

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 15

for i, filepath in enumerate(yes_samples):
plt.subplot(3,3,i+1)
samplerate, test_sound = wavfile.read(filepath)
plt.title(filepath.split('/") [-2])
plt.axis('off")
plt.plot(test_sound)

plt.show()

Result:

yes

+

yes yes yes

+
+
=

yes yes yes

+
+
+

Figure 1-8 Multiple waveforms of one sample

1.4 Summary

This experiment is a speech data pre-processing experiment based on the Python language,
wave speech processing framework, and open source data set. It mainly includes viewing
of basic speech data and processing of waveform and spectrum files. Visualization and
display of specific values help trainees view essential attributes of speech data more clearly.

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 16

HUAWEI CLOUD EIl Text-to-Speech
Service

2.1 Introduction
2.1.1 About this lab

In the Speech Interaction Service on Huawei Cloud, there are text to speech and speech
recognition services. The content of this experiment is a customized version of text to
speech and a customized version of a single sentence recognition service.

Text To Speech (TTS), is a service that converts texts into realistic voices. TTS provides users
with open application programming interfaces (APIs). Users can obtain the TTS result by
accessing and calling APIs in real time and synthesize the input text into audio. Personalized
voice services are provided for enterprises and individuals by selecting tone, customizing
the volume and speed.

This service can release the Restful HTTP request service of the POST in either of the
following ways: by calling the underlying interface encapsulated by the SDK to release the
Restful service, or by simulating the access of the frontend browser. The former requires
the AK and SK of the user for identity authentication. The latter requires the user token for
identity authentication. In this lab, AK/SK authentication is used to publish a request service.

2.1.2 Objectives

Upon completion of this task, you will be able to:
® Learn how to use HUAWEI CLOUD to perform text to speech and speech recognition.
® Understand and master how to use Python to develop services.

2.2 Preparing the Experiment Environment

® Registering and Logging In to the HUAWEI CLOUD Management Console.

® For details about the documents related to speech synthesis and speech recognition,
see https://support.huaweicloud.com/en-us/api-sis/sis_03_0111.html and
https://support.huaweicloud.com/en-us/api-sis/sis_03_0040.htmL.

® Prepare the AK/SK of the HUAWEI CLOUD account. If you can get it before, you can
continue to use the previous AK/SK. If you have not obtained AK/SK before, you can
log in HUAWEI CLOUD, click "My Credentials" in the user name, and select Access

https://support.huaweicloud.com/en-us/api-sis/sis_03_0111.html
https://support.huaweicloud.com/en-us/api-sis/sis_03_0040.html

e

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 17

Keys> Create Access Key on the "My Credentials" interface to obtain and download.
Please keep the AK/SK information properly. You do not need to add any more in
other experiments, you can use this AK/SK directly.

Prepare project_id. If you have obtained it before, you can continue to use the
previous project ID. If you have not obtained it, you can view the project ID in the
API Credentials on the "My Credentials" interface, and copy the project ID of the
region as your project_id.

~— API Credentials @
n=

My Credentials

@ Learn more about HUAWEI CLOUD accounts, IAM users, and projects.

08fc7356be800f332f6 fc00afaasbse7 cn-east3 N East-Shanghar

Figure 2-1 Project ID

You need to confirm that the Python environment has been installed, the Python
SDK is suitable for Python3, and Python 3.6 or 3.7 is recommended.

2.3 Obtaining and configuring Python SDK

1.

Download the Python SDK for the Speech Interaction service
(https://mirrors.huaweicloud.com/sis-sdk/python/huaweicloud-python-sdk-sis-
1.0.0.rar) and decompress it. We can use the data in the data folder. The code can
be at the same level as the data folder. We can also use our own data and put it in
the data folder. What is the same level? As shown in the figure below, the files are of
the same level.

.ipynb_checkpoints 2020/3/25 10:06
build 2020/3/24 14:14

data - 2020/3/25 16:51
— \] hey are at the same
level

dist 2020/3/2414:14

huaweicloud python_sdk#is.egg-info 2020/3/24 1414

huaweicloud sis 2020/1/4 16:30
15 ASR Custom.ipynb 2020/7/18 10:42
=| huaweicloud sis.log 2020/2/9 19:43
";* readme.txt 2020/1/16 10:59
i setup.py 2019/11/26 19:16
";’ testipynb 2020/3/24 15:19
";’ tts_customization_demo.ipynb 2020/7/18 10:40

Figure 2-2 The Same Level

https://mirrors.huaweicloud.com/sis-sdk/python/huaweicloud-python-sdk-sis-1.0.0.rar
https://mirrors.huaweicloud.com/sis-sdk/python/huaweicloud-python-sdk-sis-1.0.0.rar

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 18

2. Please confirm that the Python package management tool “setuptools” has been
installed. Please confirm that requests and websocket-client packages have been
installed. The installed list can be viewed through the "point list" command. If they are
not installed, use the following command to install:

pip install setuptools
pip install requests
pip install websocket-client

3. Use the Anaconda Prompt command to switch to the Python SDK decompression
directory.

4. In the SDK directory, execute the command “python setup.py install” to install the
Python SDK to the development environment, or import the .py file directly into the
project.

2.4 Procedure

This experiment needs to download the SDK of the speech interaction service on the
Huawei public cloud service, and use the AK\SK information for identity authentication to
call the SDK underlying interface service to submit the Restful service request. This
experiment uses the SDK to call the TTS services , And run the experiment in Jupyter
Notebook. Specific steps are as follows:

241 TTS

Customized TTS is a service that converts text into realistic speech. The user obtains TTS
result by accessing and calling API in real time, and convert the text input by the user into
speech. Provide personalized pronunciation services for enterprises and individuals through
tone selection, custom volume, and speech speed.

Step 1 Import related modules

Code:

-*- coding: utf-8 -*-
from huaweicloud_sis.client.tts_client import TtsCustomizationClient
from huaweicloud_sis.bean.tts_request import TtsCustomRequest
from huaweicloud_sis.bean.sis_config import SisConfig
from huaweicloud_sis.exception.exceptions import ClientException
from huaweicloud_sis.exception.exceptions import ServerException
import json

Step 2 Configure related parameters

Code:

ak = "**" #Configure your own ak
sk = "***" #Configure your own sk

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 19

project_id = "***" #Configure your own project_id
region = "cn-north-4" #Beijing-4 is used by default, and the corresponding region code is cn-north-4

Step 3 Configure data and save path

Code:

text ='l like you, do you like me?' # The text to be synthesized, no more than 500 words
path ='data/test.wav' #configure save path, you can also choose not to save in the settings

Step 4 Initialize the client

Code:

config = SisConfig()

config.set_connect_timeout(5) # Set connection timeout
config.set_read_timeout(10) # Set read timeout

ttsc_client = TtsCustomizationClient(ak, sk, region, project_id, sis_config=config)

Step 5 Construct request

Code:

ttsc_request = TtsCustomRequest(text)

Set request, all parameters can be left unset, use default parameters
Set audio format, default wav, optional mp3 and pcm
ttsc_request.set_audio_format(‘'wav')

#Set the sampling rate, 8000 or 16000, the default is 8000
ttsc_request.set_sample_rate('8000')

Set the volume, [0, 100], default 50

ttsc_request.set_volume(50)

Set the pitch, [-500, 500], default 0

ttsc_request.set_pitch(0)

Set the speed of sound, [-500, 500], default 0
ttsc_request.set_speed(0)

Set whether to save, the default is False
ttsc_request.set_saved(True)

Set the save path, this parameter will only take effect when the setting is saved
ttsc_request.set_saved_path(path)

Step 6 TTS test

Code:

Send a request and return the result. You can view the saved audio in the specified path.
result = ttsc_client.get_ttsc_response(ttsc_request)
print(json.dumps(result, indent=2, ensure_ascii=False))

Result:

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 20

"result": {
"data": "UkIGRuUT:--

L
"trace_id": "b9295ebb-1c9c-4d00-b2e9-7d9f3dd63727",
"is_saved": true,
"saved_path": "data/test.wav"

}

trace_id indicates the internal token of the service, which can be used to trace the specific
process in logs. This field is unavailable when the invocation fails. In some error cases, this
token string may not be available. result: indicates the recognition result if the invoking is
successful. This field is unavailable if the invoking fails. data indicates audio data, which is
returned in Base64 encoding format.

The saved speech data is as follows:

| 8k16bit.pcm
2] 16k16bitmp3
| 16k16bit.pcm
2/ 16k16bit.wav

2 test.wav

Figure 2-3 The Saved Speech Data

2.5 Summary

This chapter mainly introduces the specific operations of using the Speech Interaction
Service on Huawei’s public cloud to carry out experiments. It mainly implements related
functions by issuing RestFul requests through the SDK. When using the SDK to issue RestFul
requests, you need to use the necessary tools The configuration of user authentication
information is mainly introduced and explained on the system for AK\SK in this chapter,
which helps trainees to use speech synthesis to provide practical operation guidance.

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 21

Speech Recognition Based on Seq2Seq

3.1 Introduction
3.1.1 About this lab

The RNN is suitable for modeling data of the sequence type. Audio data is of this type.
Therefore, compared with images, the RNN is better adapted to audio data of this sequence
type to recognize audio. Seq2Seq uses the RNN series models and becomes a unique model
structure, which is suitable for the scenario where the input is a sequence and the output
is also a sequence.

3.1.2 Objectives

Upon completion of this task, you will be able to:

® Have a good command of building the Seq2Seq model by using Keras in
TensorFlow?2.0.

® Have a good command of using the Seq2Seq model to recognize voices.

3.1.3 Knowledge Required

This experiment requires knowledge in three aspects:
® The theoretical basis of Seq2Seq is available.
® Keras programming is supported.

® Basic programming in Python.

3.2 Procedure

This chapter is based on the Wave framework. The main steps are as follows:
® Read and preprocess data.

® C(Create a Seq2Seq model, train and test it.

Step 1 Import related modules

Code:

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 22

#coding=utf-8

import warnings

warnings.filterwarnings("ignore")

import time

import tensorflow as tf

import scipy.io.wavfile as wav

import numpy as np

from six.moves import xrange as range

from python_speech_features import mfcc

from tensorflow.keras.layers import Input,LSTM,Dense
from tensorflow.keras.models import Model,load_model
import pandas as pd

import numpy as np

Step 2 Configure data path
Code:

audio_filename = "data/audio.wav"
target_filename = "data/label.txt"

Step 3 Read data and perform feature extraction

Code:

def sparse_tuple_from(sequences, dtype=np.int32):
indices = []
values = []

for n, seq in enumerate(sequences):
indices.extend(zip([n]*len(seq), range(len(seq))))
values.extend(seq)

indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values)
shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1]+1], dtype=np.int64)

return indices, values, shape

def get_audio_feature():
Read the content of the wav file, fs is the sampling rate, audio_filename is the data
fs, audio = wav.read(audio_filename)

#Extract mfcc features

inputs = mfcc(audio, samplerate=fs)

#Standardize characteristic data, subtract the mean divided by the standard deviation
feature_inputs = np.asarray(inputs[np.newaxis, :])

feature_inputs = (feature_inputs - np.mean(feature_inputs))/np.std(feature_inputs)

Characteristic data sequence length

feature_seq_len = [feature_inputs.shape[1]]

return feature_inputs, feature_seq_len
feature_inputs, feature_seq_len = get_audio_feature()

def get_audio_label():

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 23

with open(target_filename, 'r') as f:
The original text is “i like you , do you like me”
line = f.readlines() [0].strip()

Put it in the list, replace the space with "'

#['i', ', 'like', ' ', 'you',' Y,) Y, tdot, Y tyou!, Y like!, Y, "me]

targets = line.split(' ")

targets.insert(0,'<START>")

targets.append("<END>")

print(targets)

Convert the list into sparse triples

train_targets = sparse_tuple_from([targets])

return targets,train_targets

line_targets,train_traget=get_audio_label()

Result:
['<START>', 'i', 'like', 'you', ',', 'do', 'you', 'like', 'me', 'KEND>']

Step4 Configure neural network parameters

Code:

target_characters = list(set(line_targets))
INUPT_LENGTH = feature_inputs.shape[-2]
OUTPUT_LENGTH = train_traget[-1][-1]
INPUT_FEATURE_LENGTH = feature_inputs.shape[-1]
OUTPUT_FEATURE_LENGTH = len(target_characters)

N_UNITS = 256
BATCH_SIZE =1
EPOCH = 20

NUM_SAMPLES = 1
target_texts = []
target_texts.append(line_targets)

Step5 Create Seq2Seq model

Code:

def create_model(n_input,n_output,n_units):

#encoder

encoder_input = Input(shape = (None, n_input))

The input dimension n_input is the dimension of the input xt at each time step

encoder = LSTM(n_units, return_state=True)

n_units is the number of neurons in each gate in the LSTM unit, and only when return_state is
#set to True will it return to the last state h, ¢

_encoder_h,encoder_c = encoder(encoder_input)

encoder_state = [encoder_h,encoder_c]

#Keep the final state of the encoder as the initial state of the decoder

#decoder

decoder_input = Input(shape = (None, n_output))

#The input dimension of decoder is the number of characters

decoder = LSTM(n_units,return_sequences=True, return_state=True)

When training the model, the output sequence of the decoder is required to compare and
#optimize the result, so return_sequences should also be set to True

decoder_output, _, _ = decoder(decoder_input,initial_state=encoder_state)

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 24

#In the training phase, only the output sequence of the decoder is used, and the final state h.c is
#not required

decoder_dense = Dense(n_output,activation='softmax')

decoder_output = decoder_dense(decoder_output)

The output sequence passes through the fully connected layer to get the result

#Generated training model

model = Model([encoder_input,decoder_input],decoder_output)

The first parameter is the input of the training model, including the input of encoder and
#decoder, and the second parameter is the output of the model, including the output of the decoder

Inference stage, used in the prediction process

Inference model—encoder

encoder_infer = Model(encoder_input,encoder_state)

Inference model -decoder

decoder_state_input_h = Input(shape=(n_units,))
decoder_state_input_c = Input(shape=(n_units,))

The state of the last moment h,c

decoder_state_input = [decoder_state_input_h, decoder_state_input_c]

decoder_infer_output, decoder_infer_state_h, decoder_infer_state_c =
decoder(decoder_input,initial_state=decoder_state_input)

#The current state

decoder_infer_state = [decoder_infer_state_h, decoder_infer_state_c]

decoder_infer_output = decoder_dense(decoder_infer_output)# Current time output

decoder _infer =
Model([decoder_input]+decoder_state_input,[decoder_infer_output]+decoder_infer_state)

return model, encoder_infer, decoder_infer
model_train, encoder_infer, decoder_infer = create_model(INPUT_FEATURE_LENGTH,
OUTPUT_FEATURE_LENGTH, N_UNITS)
model_train.compile(optimizer='adam’, loss='categorical_crossentropy')
model_train.summary ()

Result:

Model: "model"

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, None, 13) 0

input_2 (InputLayer) (None, None, 8) 0

stm_1 (LSTM) [(None, 256), (None, 276480 input_1[0][0]

stm_2 (LSTM) [(None, None, 256), 271360 input_2[0][0]

stm_1[0][1]
stm_1[0][2]

dense_1 (Dense) (None, None, 8) 2056 lstm_2[0][0]

Total params: 549,896
Trainable params: 549,896

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 25

Non-trainable params: 0

Step 6 Configure training data
Code:

encoder_input = feature_inputs

decoder_input = np.zeros((NUM_SAMPLES,OUTPUT_LENGTH,OUTPUT_FEATURE_LENGTH))
decoder_output = np.zeros((NUM_SAMPLES,OUTPUT_LENGTH,OUTPUT_FEATURE_LENGTH))
target_dict = {char:index for index,char in enumerate(target_characters)}

target_dict_reverse = {index:char for index,char in enumerate(target_characters)}

print(decoder_input.shape)
for seg_index,seq in enumerate(target_texts):

for char_index,char in enumerate(seq):
print(char_index,char)
decoder_input[seqg_index,char_index,target_dict[char]] = 1.0
if char_index > 0:
decoder_output[seq_index,char_index-1,target_dict[char]] = 1.0

Result:

(1, 10, 8)
0 <START>
Ti

2 like

3 you

4,

5 do

6 you

7 like

8 me

9 <END>

Step 7 Model training
Code:

#Get training data, in this example only one sample of training data
model_train.fit([encoder_input,decoder_input],decoder_output,batch_size=BATCH_SIZE,epochs=EPOC
H,validation_split=0)

Result:

Train on 1 samples

Epoch 1/20

11 [] - 65 6s/sample - loss: 1.6983
Epoch 2/20

11 [] - 0s 464ms/sample - loss: 1.6155
Epoch 3/20

11 [] - 1s 502ms/sample - loss: 1.5292

S

HUAWEI

HCIP-AI-El Developer V2.0 Speech Processing Lab Guide

Page 26

Epoch 4/20

1710
Epoch 5/20

1710
Epoch 6/20

ANt

Epoch 7/20

ANt

Epoch 8/20

ANt

Epoch 9/20

1710
Epoch 10/20

ANt

Epoch 11/20

ANt

Epoch 12/20

ANt

Epoch 13/20

1710
Epoch 14/20

1710
Epoch 15/20

ANt

Epoch 16/20

ANt

Epoch 17/20

ANt

Epoch 18/20

1710
Epoch 19/20

ANt

Epoch 20/20

ANt

] - 0s 469ms/sample - loss
] - 1s 520ms/sample - loss
] - Os 445ms/sample - loss
] - Os 444ms/sample - loss
] - Os 424ms/sample - loss

] - 0s 432ms/sample - loss

] - Os 448ms/sample - loss:
] - 1s 501ms/sample - loss:
] - 0s 471ms/sample - loss:
] - 0s 453ms/sample - loss:
] - Os 444ms/sample - loss:
] - 0s 452ms/sample - loss:
] - 0s 457ms/sample - loss:
] - 1s 522ms/sample - loss:
] - Os 444ms/sample - loss:
] - Os 433ms/sample - loss:

] - Os 432ms/sample - loss:

<tensorflow.python.keras.callbacks.History at Ox1ecacdec128>

:1.4335

: 1.3506

: 1.2556

:1.1671

: 1.0965

:1.0321

0.9653

0.9038

0.8462

0.7752

0.7188

0.6608

0.6058

0.5542

0.5001

0.4461

0.4020

Step 8

Model testing

Code:

def predict_chinese(source,encoder_inference, decoder_inference, n_steps, features):

First obtain the hidden state of the predicted input sequence through the inference encoder
state = encoder_inference.predict(source)
The first character'\t' is the starting mark

predict_seq = np.zeros((1,1,features))

predict_seq[0,0,target_dict['<START>"]] = 1

output ="

Start to predict about the hidden state obtained by the encoder
Each cycle uses the last predicted character as input to predict the next character until the

#terminator is predicted

for i in range(n_steps):#n_steps is maximum sentence length
Input the hidden state of h, c at the last moment to the decoder, and the predicted

#character predict_seq of the last time

yhat,h,c = decoder_inference.predict([predict_seq]+state)

S

HUAWEI HCIP-AI-El Developer V2.0 Speech Processing Lab Guide Page 27

Note that yhat here is the result output after Dense, so it is different from h
char_index = np.argmax(yhat[0,-1,:])
char = target_dict_reverse[char_index]

print(char)

state = [h,c] # This state will continue to be passed as the next initial state
predict_seq = np.zeros((1,1,features))
predict_seq[0,0,char_index] = 1
if char == '<END>": # Stop when the terminator is predicted
break
output +=" " +char
return output
out =
predict_chinese(encoder_input,encoder_infer,decoder_infer, OUTPUT_LENGTH,OUTPUT_FEATURE_LEN
GTH)
print(out)

Result:

i like you , do you like me

This experiment only uses one training sample. Interested students can further expand
the model to train on more sample spaces. In addition, the model obtained during
each training may have different output results during prediction due to different

3.3 Summary

The main content of this experiment is based on Python and scipy, python_speech_features,
six, keras, and TensorFlow frameworks to recognize speech data through Seq2Seq. After
the experiment, trainees can master the construction of Seq2Seq model through Keras and
the application of Seq2Seq model to speech recognition.

Huawei Al Certification Training

HCIP-AI-EI Developer

Natural Language
Processing Lab Guide

ISSUE:2.0

V2

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

Q) , . .
wawe and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of
their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made
between Huawei and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided "AS IS" without warranties,
guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has
been made in the preparation of this document to ensure accuracy of the contents, but
all statements, information, and recommendations in this document do not constitute
a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129
People's Republic of China

Website: http://e.huawei.com

Huawei Prorietary and Confidential
Copyright © Huawei Technologies Co,Ltd

http://e.huawei.com/

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 1

Huawei Certificate System

Huawei's certification system is the industry's only one that covers all ICT technical
fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT
technical architecture featuring cloud-pipe-device synergy. It provides three types of
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT
Vertical Certification.

To meet ICT professionals' progressive requirements, Huawei offers three levels of
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional
(HCIP), and Huawei Certified ICT Expert (HCIE).

HCIP-AI-El Developer V2.0 certification is intended to cultivate professionals who
have acquired basic theoretical knowledge about image processing, speech processing,
and natural language processing and who are able to conduct development and
innovation using Huawei enterprise Al solutions (such as HUAWEI CLOUD El), general
open-source frameworks, and ModelArts, a one-stop development platform for Al
developers.

The content of HCIP-AI-EI Developer V2.0 certification includes but is not limited to:
neural network basics, image processing theory and applications, speech processing
theory and applications, natural language processing theory and applications,
ModelArts overview, and image processing, speech processing, natural language
processing, and ModelArts platform development experiments. ModelArts is a one-stop
development platform for Al developers. With data preprocessing, semi-automatic data
labeling, large-scale distributed training, automatic modeling, and on-demand model
deployment on devices, edges, and clouds, ModelArts helps Al developers build models
quickly and manage the lifecycle of Al development. Compared with V1.0, HCIP-AI-EI
Developer V2.0 adds the ModelArts overview and development experiments. In
addition, some new El cloud services are updated.

HCIP-AI-El Developer V2.0 certification proves that you have systematically
understood and mastered neural network basics, image processing theory and
applications, speech processing theory and applications, ModelArts overview, natural
language processing theory and applications, image processing application
development, speech processing application development, natural language processing
application development, and ModelArts platform development. With this certification,
you will acquire (1) the knowledge and skills for Al pre-sales technical support, Al
after-sales technical support, Al product sales, and Al project management; (2) the
ability to serve as an image processing developer, speech processing developer, or
natural language processing developer.

Page 2

HCIP-AI-El Developer V2.0 Natural Language Processing Lab Guide

9s n SSa00Y UOISSILUSURL |
eSSy || PaynI) IImenH NOS NYIM wodereq e
LOI _w_
" A g 1INNS
\Q(UII\ Sunndwo) wabinjaiu) Beiols aunpnaseyul 1)
™ /
v J9u3) eeq
JEUOISS3401d 1D PaYILa) Bmeny
\a_uz
(c\ 225 pnop Sunndwo? pnop
ssn uonedyna)
wada 1) uww.tuu RMenH 9g=ned DIAIIS pue uLoaeld
. UOREIIUNWILLIOD)
s - uoisiA Juabaau) 10 v eleq big
K33yes ongng dueuly UORBIYIII) WA 1D

uoned1II) IaMenH

IIMVNH 7§ 0110J3104 uoned|iud) lsmenH

-
HUAWEI

QD

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 3

About This Document

Overview

This document is a training course for HCIP-Al certification. It is intended for trainees who
are going to take the HCIP-Al exam or readers who want to understand basic Al knowledge.
After mastering this lab, you can use the Python SDK to call NLP APIs of HUAWEI CLOUD
El or use ModelArts to build and train your NLP algorithm models.

Description
This lab consists of three groups of experiments, involving basic algorithms for natural
language processing, natural language understanding, and natural language generation.
e Experiment 1: HUAWEI CLOUD EI Natural Language Processing Service
® Experiment 2: Text classification

e Experiment 3: Machine Translation

Background Knowledge Required

This course is a basic course for Huawei certification. To better master the contents of this
course, readers must:

® Basic Python language editing capability
® Have a certain theoretical basis for natural language processing.
e Understand the TensorFlow framework.

Experiment Environment Overview

® ModelArts TensorFlow-2.1.0 8-core 32 g CPU environment

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 4

Contents
ADbOUL ThiS DOCUMENTceiiiiiieiieietnennceststeesassssssssesssssssssessssssssssssssssssesssssssssessosaas 3
OVEIVIBW ...ttt ettt sese ettt sttt st b st s st b st e s e et s et b st atestae b astaeen 3
DIESCIIPLION ettt ettt st st st st sttt ettt bbbt 3
Background Knowledge REGUITE ...ttt ts i es st sttt 3
EXperiment ENVIFONMENT OVEIVIEWc.cvciriiireinieireiniciresseetsesste st asessesstsesstasese st ssesstasssesstasssesesasssesetasssesesssssesssens 3
1 HUAWEI CLOUD EI Natural Language Processing Serviceccccceveevevrercercccscnnenne 5
1.1 INEFOAUCTION ettt ea st bbbt e et ettt bbbt 5
LI o)=Yt Y/ PP ST TRTTT 5
1.3 PTOCEAUIE ...ttt et et s e s bbb s ettt sttt 5
1.3.1 Preparing the EXperiment ENVIFONMENT ..ottt sssas s sssssssssssssssssssssssssesssssssesanens 6
1.3.2 NLP BASIC SEIVICE ...cuuneerniieieircicictcieeeaeeseesesstasessesesse s sse s s ssssssessssnessssstssesnsesesssssesassse s sssssssssssssssessssesssnsens 9
1.3.3 Natural Language GENEIationN SEIVICE ...ttt esstasessessessetsebsstse sttt sassasssstasessessessssssses 10
1.4 EXPEITMENT SUMIMAIY ..oocuiiirireiciremeecireseeetseseeaee st tseseaaessesetaessesesasssesesasssesetasssesesasssesesastsesesastsesesasssesssasssesesasssessasssesesas 11
2 Text classSifiCation.........iiiiiininrnccnrtnncststsessasssssssssssssssssssssassassssssssses 12
2.7 INEFOAUCTION ..ttt sttt ebseb st bbb etk s b bbbttt bbb seen 12
2.2 ODJECEIVE ...ttt bbb ss s s s s s s s A RS eEA S E e ee £ E e baE e sse e b e R AR ARt enen 12
2.3 PrOCEAUIE ...ttt et ettt et b bbb bbbt b et bbb eeen 12
2.3.T ENVIrONMENT PreParaltionN ...ttt ettt sttt sttt s st b ettt e s b et assstssassetanans 12
2.3.2 Naive Bayesian text ClasSifiCatioN ...ttt s s s ssssss s sssasssssssenes 14
2.3.3 SVM TeXt ClasSifiCATION c..ceueueeeeerireee ettt ta st st es e s ettt nesnbanes 18
2.3.4 TEXECNN TeXE ClasSifiCatiON ...ttt ettt sssese s es e sss et sese et ets s ettt 22
2.4 EXPEFIMENT SUMIMIATY eouitieiieirieieireieieeseseisssess st sssastss s sss s s ssstss s s tssssesseassssssssssessssassssssssssssssssssassssssasssssesasssssssaens 29
3 Machine Translation..........ininniiinnncccseesscsesestssssssssesessssssssssssesnes 30
BT INEFOAUCTION ettt et s e b s s ettt 30
3.2 ODJECEIVE ettt sttt e s s s e s a bR A R A bR b AR b AR e st e e a st st 30
3.3 PrOCEAUIE ...ttt stttk bbb s b e bbbttt b et bbb seen 30

3.4 EXPEIIMENT SUMIMIATY oottt eisesess et sssasess s sas s s sss e s ass e st s s s e s b tss st s bsssenastsssesastsssesasessssnanens 45

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 5

HUAWEI CLOUD EI Natural Language
Processing Service

1.1 Introduction

Natural Language Processing (NLP) is artificial intelligence technologies for text analysis
and mining. HUAWEI CLOUD provide the NLP services aim to help users efficiently process
text.

NLP consists of the following subservices, but most services are only support Chineses
language:

Natural Language Processing Fundamentals (NLPF) provides APIs related to natural
languages, such as word segmentation, naming entity recognition (NER), keyword
extraction, and short text similarity, it can be used in scenarios such as intelligent Q&A,
chatbot, public opinion analysis, content recommendation, and e-commerce evaluation
analysis.

Language Generation (LG) provides APIs related to language generation for users, such as
text abstracts. It can be used in scenarios such as news abstract generation, document
abstract generation, search result fragment generation, and commodity review abstract.

Language Understanding (LU) provides APIs related to language understanding, such as
text classification and emotion analysis, and can be used in scenarios such as emotion
analysis, content detection, and advertisement recognition.

1.2 Objective

This experiment describes how to use NLP services in HUAWEI CLOUD. Currently, HUAWEI
CLOUD provides the Python SDK for NLP. This experiment will guide trainees to understand
and master how to use the Python SDK to call NLP services.

1.3 Procedure

In this experiment, you need to download the NLP SDK from HUAWEI CLOUD and access
the service in two ways: AK/SK information is used for identity authentication, and the
underlying API service of the SDK is invoked to submit a RESTful service request. Token
information of a user is used to submit a RESTful request. The procedure is as follows:

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

1.3.1 Preparing the Experiment Environment
1.3.1.1 Obtain the project code

Step 1 Register and log in to the console.

Step 2

HUAWEI CLOUD

HUAWEI CLOUD

Hong Kong Data Center Now Available

Learn More

@

HUAWEI CLOUD

(=)
Resources [Beiings] (@
i Elastic Cloud ... 0
] Volume Back... 0
B Relational Da 0
(@]
P Recently Visited Services
®
&

Developer Tools-APl Search

Hot Cloud Service: Elastic Cloud Server

2 APl Explorer

Products

Solutions

Enterprise Intelligence

e

Object Storage Service

Secure | Efficient | Easy-

to-use

Bare Metal Se..

Virwal Privat

Domain Regis

Operation Capability

2. SDK Center

(]

Elastic Cloud Server

Three-copy Backup | FUIFECS
Recovery.

0 Auto Scaling
0 Elastic Load B.
0

Identity and Access Management

€ Template Center

IoT Device Access

Support i, Console

4 _ i il
ModelArts

Development Platfarm for Al
Developers

RDS for MySQL
Stable Performance for 5000
Concurrent Cannections

View Resources in All Regions A Hello! illing Center
o hw
Authenticated
0 Elastic Volum... 0 Auhentcass
0 Elastic IP 0 (0] 0
Orders to Re.. Unpaid Orde... ~ Service Tickets
\PP BERl: BT E R
BIRHIE. SSH. BUIMFABINGE @
More [
Q [Upgrade Notices) HUAW.

APl Explorer [Upgrade Notices] HUAW...

2020-09-28 [Product Notices) Knowle.

) Developer Tools 20-09-27 [Security Notices] Jackson...

Click the username and select “My Credentials” from the drop-down list.

" HUAWEI CLOUD

Resources [5cingd] (B
=)
an Elastic Cloud .. 0
B] Volume Back... 0

Relational Da 0

(@]

Recently Visited Services
&
= Developer Tools-API Search
&

Hot Cloud Service: Elastic Cloud Serve

P N
toud.com/i

Bare Metal Se.

virtual privat..

Gomain fegis.

Operation Capability

< canter

oll B
0 Elastic Load B.
0

Identity and Access Management

O Template center

hwstaf

View Resources in All Re]

0 Elastic Volur.

0 lastic 1P

Page 6

1aT Device Access

F Py P I O3
SiEblE. SSH. ENMFAGIDRE _
Notice wore &
Q 2020-09-20 [Upgrade Notices] HUAW.

APl Explorer 20002

2020-09-28

{2) Developer Tools 2020-09-27

[Upgrade Notices] HUAW.
[Product Notices] Knowle.

[Security Notices] Jackson.

Step 3 On the My Credential page, view the project ID in the projects list.

e

HUAWEI

Projects

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Project ID =

086596bb6e801 0a32f2cc016ff0afobd

1.3.1.2 Download and Use the SDK

08658d924c00109e2f28c01625ffec5a

08658d922a00109e2f27c016916d7709

08658d90b000109a2f05c01620c11059

093b70dc1100f3972fa0c016f761ec45

093b70dc230025b32fb0c016cffeeade

093b70dc260025332f04016040f9ede

093b70dc1380f5bf2f16c0160929fbb7

093b70dc0200f5b32f28c01641ed622¢C

093b70dc1780108c2f18c0166ad7fa70

Project Name |=

cn-north-4

cn-north-5

cn-north-6

cn-east-3

cn-east-2

n-south-1

cn-southwest-2

ap-southeast-1

ap-southeast-2

ap-southeast-3

Page 7

Region |=

CN North-Beijing4

CN North-Ulangab201
CN North-Ulangab202
CN East-Shanghail

CN East-Shanghai2

CN South-Guangzhou
CN Southwest-Guiyang!
AP-Hong Kong
AP-Bangkok

AP-Singapore

Step 1 Go to the created notebook environment with the 8-core 32 GB modelArts
TensorFlow2.1.0 configuration.

ModelArts
Notebooks PyCharm Toolkit Mc
oard
&
Actiities v Note
o o ‘The notebook instances in the * © Running * status are billed. If any notebook instance is no Longer used, stop it to avoid unnecessary fees. If you have enabled auto stop for any notebook instanice, pay attention to the remaining running duration.
ExeML
® .
Create Display Only My Instances @ Allstatuses -
N Name = Status Work Environment Instance Flavor Description Create. Created .. Operation
B]
v notebook-641e © stopped TF-21.08pytorch-14.. 8 YCPUs | 32GiB -2 Sep22,2020.. hstaff Delete

Step 2 Go to the notebook page, create a folder, and rename the folder
“huawei_cloud_ei".

 Jupyter

Files Running ModelArts Examples

Select items to perform actions on them.

Open JupyterLab

Upload -

Notebook:
Conda-python3

Do ~ | m/ Name ¥

The notebook list is empty.

Pytorch-1.4.0

R-3.6.1

Total Records: 0

TensorFlow-2.1.0

Other

Text File

Terminal

HUAWEI HCIP-AI-El Developer V2.0 Natural Language Processing Lab Guide Page 8

: J u pyter Open JupyterLab

Files Running ModelArts Examples

Move n Upload Neww O

~ B/ Name Last Modified File size

1
[0 Untitled Folder seconds ago
g

Total Records: 1 1

Rename directory

Enter a new directory name:

huawei cloud_ej ‘

Cancel Rename

Step 3 Click the newly created huawei_cloud_ei folder.

: J u pyter Open JupyterLab
Files Running ModelArts Examples
Select items to perform actions on them. Upload || New~ | &
(Jo | v | B/ huawei_cloud_ei Name ¥ Last Modified File size
O. seconds ago

The notebook list is empty.

Total Records: 0

Step 4 Create a notebook file and select the conda-python3 environment.

: J u pyter Open JupyterLab
Files Running ModelArts Examples
Select items to perform actions on them. Upload [s]
[(J0 ~ BB/ huaweicloud ei Name ¥ — e
0. Pytorch-1.4.0
The notebook list is empty. R-36.1
TensorFlow-2.1.0
10 v Total Records: 0 Other
Text File
Folder

Terminal

e

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 9

JUpytel’ Untitled Last Checkpoint: a few seconds ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help

B+ x @B 4+ ¥ MRun B C W Code v~ | E Convertto Python File

In

Step 5 Download the Python SDK

Input:

Kernel starting, please wait Trusted ¢ | Conda-python3 @

Memory: 78 / 27648 MB

Al%20EI%20Developer/V2.1/nlp-sdk-python.zip

! wget https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-

Output:

Download the python SDK

In [1]: ! wget http://nlp—sdk. obs. cnnorth—¢. nyhuaweicloud. com/nlp—sdk—python. zip

—2020-10-09 16:03:27— http://nlp—sdk. obs. conorth—4. myhuaweicloud. con/nlp—sdk—python. zip
Resolving proxy-notebook. modelarts—dev-proxy. con (proxy—notebook.nodelarts—dev—proxy.com)...

182.168.0.172

Connecting to proxy-notshook. modelarts—dev—proxy. con (proxy—notsbock. nodelarts—dev-proxy. com) | 132, 188.0. 172 :8083... comnected.

Proxy request sent, awaiting response... 200 O
Length: 27951 (27K} [applicationszip]
Saving to: ‘nlp—sdk—python. zip

nlp-sdk—python. zip 100§ [————=>] 2T.30K — —KB/s

2020-10-09 16:03:27 (465 MB/s) — ‘nlp—sdk-python. zip’ saved [27951/27951]

Step 6 Decompressing the SDK

Input:

| ! unzip nlp-sdk-python.zip

Output:

In [2]: ! unzip nlp—sdk-—python. zip

Archive: nlp—sdk

aweicloud_:
aweicloud
aweicloud
aweiclou

creati
creat
inflat
inflat

p/apig_sdk

aweicloud_:
aweicloud
: huaweiclow
aweiclou

aweicloud_:
aweiclou
: huaweicloud_n
aweicloud_:
setup. py

__/NlpReszponse. ¢
1p/__pveache_ /NluClient. cpython—37.
p/__pvecache_ /_ init_ .cpython-37.pye

: demo/
demo/AKSKEDemo. py
. demo/TokenDemo. py

1.3.2 NLP Basic Service

Step 1 Importing SDKs

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 10

Input:

import json

from huaweicloud_nlp.MtClient import MtClient

from huaweicloud_nlp.NlpfClient import NlpfClient

from huaweicloud_nlp.NluClient import NluClient

from huaweicloud_nlp.NlgClient import NlgClient

from huaweicloud_nlp.HWNIpClientToken import HWNIpClientToken
import warnings

warnings.filterwarnings("ignore")

Step 2 Token authentication

Input:

tokenClient = HWNIpClientToken("domain_name", "user_name", "your_password", "cn-north-4",
"your_project_id")

The token authentication mode is used. You need to enter the domain account name, user
name, password, region, and project ID.

Step 3 Initializing the Client

Input:

| nlpfClient = NlpfClient(tokenClient)

Step 4 Named Entity Recognition (Basic Edition)

This API is used for named entity recognition (NER). Currently, it can be called to identify
and analyze person names, locations, time, and organization names in the text.

Input:

response = nlpfClient.ner("President Donald Trump said on Thursday (Oct 8) he may return to the
campaign trail with a rally on Saturday after the White House physician said he had completed his
course of therapy for the novel coronavirus and could resume public events.", "en")

print(json.dumps(response.res,ensure_ascii=False))

Output:

In [8]: response = nlpfClient.ner("President Donald Trump zaid on Thursday (Oct B) he may retwrn to the campaign trail with a rally on Saturday after t
print (jzon. dunps (response. res, ensure_ascii=False))

»

Token obtained successfully.
{"named_entities”: [{"len”: 12, “offset”: 10, “tag”: "per”, "word”: "Donald Trump®}, ["len”: 8, “offset”: 31, “taz”: "t", “word”: “Thursda
771, {"len”: 8, “offset”: 100, “taz”: “t", "word”: "Saturday”}, {"len”: 11, "offset”: 119, “tag”: “loc”, “word”: “White House"}]}

1.3.3 Natural Language Generation Service

Step 1 Initializing the Client

Input:

| nlgClient = NlgClient(tokenClient)

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 11

Step 2 Text Summary (Basic)

Input:

response = nlgClient.summary("As the United States continues its struggle with the pandemic-
induced economic recession and a sputtering recovery, the country's burgeoning debt is not anyone's
top concern these days. Even deficit hawks are urging a dysfunctional Washington and a chaotic
White House to approve another round of badly needed stimulus to the tune of trillions. The US
federal budget is on an unsustainable path, has been for some time, Federal Reserve Chairman
Jerome Powell said this week. But, Powell added, This is not the time to give priority to those
concerns. However, when the country eventually pulls out of its current health and economic crises,
Americans will be left with a debt hangover. On Thursday, the Congressional Budget Office estimated
that for fiscal year 2020, which ended September 30, the US deficit hit $3.13 trillion -- or 15.2% of
GDP -- thanks to the chasm between what the country spent ($6.55 trillion) and what it took in
($3.42 trillion) for the year. As a share of the economy, the estimated 2020 deficit is more than triple
what the annual deficit was in 2019. And it's the highest it has been since just after World War Il. The
reason for the huge year-over-year jump is simple: Starting this spring, the federal government spent
more than $4 trillion to help stem the economic pain to workers and businesses caused by sudden
and widespread business shutdowns. And most people agree more money will need to be spent until
the White House manages to get the Covid-19 crisis under control. The Treasury Department won't
put out final numbers for fiscal year 2020 until later this month. But if the CBO's estimates are on the
mark, the country's total debt owed to investors -- which is essentially the sum of annual deficits that
have accrued over the years -- will have outpaced the size of the economy, coming in at nearly 102%
of GDP, according to calculations from the Committee for a Responsible Federal Budget. The debt
hasn't been that high since 1946, when the federal debt was 106.1% of GDP. Debt is the size of the
economy today, and soon it will be larger than any time in history, CRFB president Maya
MacGuineas said. The problem with such high debt levels going forward is that they will increasingly
constrain what the government can do to meet the country's needs. Spending is projected to continue
rising and is far outpacing revenue. And interest payments alone on the debt -- even if rates remain
low -- will consume an ever-growing share of tax dollars. Given the risks of future disruptions, like a
pandemic, a debt load that already is outpacing economic growth puts the country at greater risk of
a fiscal crisis, which in turn would require sharp cuts to the services and benefits on which Americans
rely. There is no set tipping point at which a fiscal crisis becomes likely or imminent, nor is there an
identifiable point at which interest costs as a percentage of GDP become unsustainable, CBO
director Phillip Swagel said last month. But as the debt grows, the risks become greater. ","The US
debt is now projected to be larger than the US economy",None,"en")

print(json.dumps(response.res, ensure_ascii=False))

Output:

In [B]: response = nlgClient.summary(As the United States continues its struggle with the pandemic—induced economic recession and a sputtering recover
print (json. dumps (response.res, ensure_ascii=False))

3

{"summary”™: “As the United States continues its struggle with the pandemic—induced economic recession and 2 sputtering recovery, the countr
¥ = burgeoning debt iz not anyone’ = top concern these days. The US federal budget iz on an unsustainable path, has been for zome time, Fede
ral Reserve Chairman Jerome Powell said this week.”}

1.4 Experiment Summary

This chapter describes how to use NLP services in HUAWEI CLOUD to perform experiments,
including “Named Entity Recognition(NER)” and “Text Summary”.

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 12

Text Classification

2.1 Introduction

This chapter describes how to implement a text classification model. The specific task is
Sentiment Analysis by user comments. The models include:

® Naive Bayes
® Support Vector Machine
® TextCNN

2.2 Objective

® Understand the basic principles and process of text categorization tasks.

® Understand the differences between Naive Bayes, SVM, and TextCNN
algorithms.

® Master the method of building a neural network based on TensorFlow 2.x.

2.3 Procedure

2.3.1 Environment Preparation

Step 1 Go to the notebook page, create a folder, and rename the folder text_classification.

’ Ju py‘ter Open JupyterLab
Files Running ModelArts Examples
Select items to perform actions on them Upload || New~ | &
Notebook:
(Jo ~ Wm/ Name ¥
Conda-python3
O [0 huawei_cloud_ei Pytorch-1.4.0
R-3.6.1
10 ~| Total Records: 1 1 TensorFlow-2.1.0
Other

Text File

Terminal

Az

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 13
: JU pyter Open JupyterLab
Files Running ModelArts Examples
Move ﬂ Upload New~ &
91 -~ m/

Name Last Modified File size

[J [huawei_cloud_ei 7 minutes ago

(D Untitled Folder seconds ago
Rename directory

Enter a new directory name:

text_classification| ‘

Cancel | Rename

: J u pyter Open JupyterLab

Step 2 Click the created text_classification folder.

Files Running ModelArts Examples

Select items to perform actions on them.

Upload New~ &

(Jo |~ Wm/ text classification Name ¥ Last Modified
O.

File size
seconds ago

The notebook list is empty.

Step 3 Create a notebook file and select the TensorFlow-2.1.0 environment.

Upload 4

| Notebook:
Name ¥
. Conda-python3
Pytorch-1.4.0 kB
R-3.6.1 MB

TensorFlow-2.1.0

Other
Text File
Folder

Terminal

Step 4 Downloading Data

Input:

e

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 14

lwget https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
Al%20EI%20Developer/V2.1/nlpdata.zip

Output:

In [1]:

luget hitps://heip—ei. obs. ennorth—4. nyhuaveicloud. con/nlpdata. zip

—2020-10-09 19:11:10— https://hoip—ed. obs. cnnor th—4. mybwaweicloud. com/alpdata. zip
Resolving proxy-notebook. modelarts—dev—proxy. con (proxy—notebook. modelarts—dev—proxy. con). .. 192.168.0. 172

Connecting to proxynotebook.modelarts—dev—proxy. com (proxy—notebook. madelarts—dev—rproxy. con) |192. 168, 0, 172] :B083... comnected.

Proxy request sent, awaiting response... 200 OK
Length: 435253 (474K) [application/zip]
Saving to: ‘nlpdata.zip’

nlpdata. zip 100% [——————=>] 473.88k —.-KB/s in 0.005s

2020-10-09 19:11:10 (B6.6 MB/s) — ‘nlpdata. zip’ saved [485253/485253]

Step 5 Decompressing Data

Input:

| lunzip nlpdata.zip

Output:

In [2]: lunzip nlpdata.zip

2.3.2 Naive

drchive: nlpdata. zip
creating: data/
inflating: datafrt-polarity.neg
inflating: data/rt-polarity.pos

Bayesian text classification

Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment.

Upload z

Notebook:

Name
Conda-python3
Pytorch-1.4.0 kB
R-3.6.1 MB

TensorFlow-2.1.0

Other
Text File
Folder

Terminal

Step 2 Importing Related Library

Input:

import re
import pandas as pd

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 15

import numpy as np

from sklearn.metrics import classification_report

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics import classification_report, accuracy_score

Step 3 Data preprocessing

Input:

def clean_str(string):
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py

string = re.sub(r"[AA-Za-z0-9(),!?\'\']", " ", string)
string = re.sub(r"\'s", " \'s", string)

string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", ", ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \(", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)

string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()

def load_data_and_labels(positive_data_file, negative_data_file):
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
Load data from files
positive_examples = list(open(positive_data_file, "r", encoding='utf-8").readlines())
positive_examples = [s.strip() for s in positive_examples]
negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines())
negative_examples = [s.strip() for s in negative_examples]
Split by words
x = positive_examples + negative_examples
x = [clean_str(sent) for sent in x]
X = np.array(x)
Generate labels
positive_labels = [1] * len(positive_examples)
negative_labels = [0] * len(negative_examples)
y = np.concatenate([positive_labels, negative_labels], 0)

shuffle_indices = np.random.permutation(np.arange(len(y)))
shuffled_x = x[shuffle_indices]
shuffled_y = y[shuffle_indices]

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 16

return shuffled_x, shuffled_y

Load data:

positive_data_file = 'data/rt-polarity.pos'
negative_data_file = 'data/rt-polarity.neg'
X, y = load_data_and_labels(positive_data_file, negative_data_file)

Show data features:
x[:5]

Output:

In [4]: x[:8]
Out[4]: array([punpkin means to be an outrageous dark satire on fraternity life , but its ambitions far exceed the abilities of writer adam lavsom
broder and his co director , tony r abrams , in their feature debut’,
*an emotionally strong and politically potent piece of cinema’,
“hawke draws out the best from his large cast in beautifully articulated portrayals that are subtle and zo0 expressive they can sustal
n the poetic flights in burdette "= dialogue”,
*the plot twists give 1 am trying to break your heart an attraction it desperately needed’,
smarter than itz commercials make it seem’], dtype= <U266°)

Show data labels:
y[:5]

Output:

In [5]: w[:8]

outl[8]: array([0, 1, 1, 1, 11}
Input:
test_size = 2000
x_train, y_train = x[:-2000], y[:-2000]

x_test, y_test = x[-2000:], y[-2000:]
label_map = {0: 'negative', 1: 'positive'}

Step 4 Define the main class of the classifier and define the training and test functions.

Input:

class NB_Classifier(object):

def __init__(self):
naive bayes
self.model = MultinomialNB(alpha=1) #Laplace smooth: 1
use tf-idf extract features
self.feature_processor = TfidfVectorizer()

def fit(self, x_train, y_train, x_test, y_test):
tf-idf extract features
x_train_fea = self.feature_processor.fit_transform(x_train)
self.model.fit(x_train_fea, y_train)

train_accuracy = self.model.score(x_train_fea, y_train)

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 17

print("Training Accuracy: {}".format(round(train_accuracy, 3)))

x_test_fea = self.feature_processor.transform(x_test)
y_predict = self.model.predict(x_test_fea)

test_accuracy = accuracy_score(y_test, y_predict)
print("Test Accuracy: {}".format(round(test_accuracy, 3)))

y_predict = self.model.predict(x_test_fea)
print('Test set evaluate: ')
print(classification_report(y_test, y_predict, target_names=['0', '1']))

def single_predict(self, text):

text_fea = self.feature_processor.transform([text])

predict_idx = self.model.predict(text_fea)[0]

predict_label = label_map[predict_idx]

predict_prob = self.model.predict_proba(text_fea)[0][predict_idx]

return predict_label, predict_prob

Step 5 Initialize and train the classifier.

Input:

nb_classifier = NB_Classifier()
nb_classifier.fit(x_train, y_train, x_test, y_test)

Output:

Training Accuracy: L9926
Test Accuracy: 0. 794
Test set evaluate:

precision recall fl-score support

0 0.73 0.81 0.79 973

1 0.81 0,78 0.79 1021

avg / total 0. 73 0. 79 0.79 2000

Step 6 Single sentence test

Test the prediction result of a single sentence:

Input:

| nb_classifier.single_predict("beautiful actors, great movie")

Output:

Tn [13]: nb_classifier. single_predict(“heautiful actors, great movis”

out[13]: (" positive’, 0.6970262131527051)

Input:

nb_classifier.single_predict("it's really boring")

Output:

Az

HUAWEI

In

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

[14]: nb_classifier.single predict("it’ = really boring”)

Out[14]: (" negative’, 0,584348337202351)

2.3.3 SVM Text Classification

Step 1

Step 2

Create a notebook file and select the TensorFlow-2.1.0 environment.

Name ¥

Importing Related Modules

Upload (5]

Notebook:
Conda-python3
Pytorch-1.4.0
R-3.6.1

TensorFlow-2.1.0

Other
Text File
Folder

Terminal

e

kB

MB

Page 18

import re

import pandas as pd
import numpy as np
from sklearn import svm

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectkBest, chi2

from sklearn.metrics import classification_report, accuracy_score

Step 3 Data preprocessing

Input:

def clean_str(string):

Tokenization/string cleaning for all datasets except for SST.

Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py

string = re.sub(r"[MA-Za-z0-9(),!?\'\']", " ", string)

string = re.sub(r"\'s", " \'s", string)

string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)

string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", ", ", string)

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 19

string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \(", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()

def load_data_and_labels(positive_data_file, negative_data_file):
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
Load data from files
positive_examples = list(open(positive_data_file, "r", encoding='utf-8").readlines())
positive_examples = [s.strip() for s in positive_examples]
negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines())
negative_examples = [s.strip() for s in negative_examples]
Split by words
X = positive_examples + negative_examples
x = [clean_str(sent) for sent in x]
X = np.array(x)
Generate labels
positive_labels = [1] * len(positive_examples)
negative_labels = [0] * len(negative_examples)
y = np.concatenate([positive_labels, negative_labels], 0)

shuffle_indices = np.random.permutation(np.arange(len(y)))
shuffled_x = x[shuffle_indices]
shuffled_y = y[shuffle_indices]

return shuffled_x, shuffled_y

Load data:

positive_data_file = 'data/rt-polarity.pos'
negative_data_file = 'data/rt-polarity.neg'
X, y = load_data_and_labels(positive_data_file, negative_data_file)

Show data features:
x[:5]

Output:

In [4]: x[:8]

Out[4]: array([punpkin means to be an outrageous dark satire on fraternity life , but its ambitions far exceed the abilities of writer adam lavsom
broder and his co director , tony r abrams , in their feature debut’,
*an emotionally strong and politically potent piece of cinema’,
“hawke draws out the best from his large cast in beautifully articulated portrayals that are subtle and zo0 expressive they can sustal
n the poetic flights in burdette "= dialogue”,
*the plot twists give 1 am trying to break your heart an attraction it desperately needed’,
smarter than itz commercials make it seem’], dtype= <U266°)

Show data labels:

S

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

HUAWEI
y[:5]
Output:
In [5]: gl:8]
out[5]: array([0, 1, 1, 1, 11}
Input:
test_size = 2000
x_train, y_train = x[:-2000], y[:-2000]
x_test, y_test = x[-2000:], y[-2000:]
label_map = {0: 'negative’, 1: 'positive'}
Step 4 Define the main class of the classifier, define training, and test functions.

Page 20

class SVM_Classifier(object):
def __init__(self, use_chi=False):

self.use_chi = use_chi # Whether use chi-square test for feature selection
SVM
self.model = svm.SVC(C=1.0, kernel='linear', degree=3, gamma="'auto')
use tf-idf extract features
self.feature_processor = TfidfVectorizer()
chi-square test for feature selection
if use_chi:
self.feature_selector = SelectkBest(chi2, k=10000) # 34814 -> 10000

def fit(self, x_train, y_train, x_test, y_test):

x_train_fea = self.feature_processor.fit_transform(x_train)
if self.use_chi:

x_train_fea = self.feature_selector.fit_transform(x_train_fea, y_train)
self.model.fit(x_train_fea, y_train)

train_accuracy = self.model.score(x_train_fea, y_train)
print("Training Accuracy: {}".format(round(train_accuracy, 3)))

x_test_fea = self.feature_processor.transform(x_test)
if self.use_chi:
x_test_fea = self.feature_selector.transform(x_test_fea)
y_predict = self.model.predict(x_test_fea)
test_accuracy = accuracy_score(y_test, y_predict)
print("Test Accuracy: {}".format(round(test_accuracy, 3)))
print('Test set evaluate: ')
print(classification_report(y_test, y_predict, target_names=['negative’, 'positive']))

def single_predict(self, text):
text_fea = self.feature_processor.transform([text])
if self.use_chi:
text_fea = self.feature_selector.transform(text_fea)
predict_idx = self.model.predict(text_fea)[0]
predict_label = label_map[predict_idx]

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 21

| return predict_label

Step 5 Train the SVM classifier without the chi-square test.

Input:

svm_classifier = SVM_Classifier()
svm_classifier.fit(x_train, y_train, x_test, y_test)

Output:

In [12]: svm_claszifier = SVM_Clazsifier()
svm_classifier.fit(x_train, y_train, x_test, y_test)|

Training Accuracy: 0.930
Test Acouracy: 0. 768
Test set evaluate:

precision recall fl-score support

negative 0.76 0.78 0.77 980
positive 0.78 0.7 0.77 1020
avg / total 0.77 0.77 0.77 2000

Step 6 Train SVM classifiers and use chi-square test.

Input:

svm_classifier = SVM_Classifier(use_chi=True)
svm_classifier.fit(x_train, y_train, x_test, y_test)

Output:

In [13]: svm_classifier = SYM_Classifier (use_chi=True)
svm_classifier. fit(x_train, y_train, x_test, y_test]

Training Accuracy: 0.915
Test Accuracy: (.78
Test set evaluate:

precizion recall fl-score support

negative 0.77 0.79 0.78 980
positive 0.80 0.77 0.78 1020
avg / total 0.7 0.78 0,78 2000

Step 7 chi-square feature analysis

Input:

def feature_analysis():
feature_names = svm_classifier.feature_processor.get_feature_names()
feature_scores = svm_classifier.feature_selector.scores_
fea_score_tups = list(zip(feature_names, feature_scores))
fea_score_tups.sort(key=lambda tup: tup[1], reverse=True)

return fea_score_tups
feature_analysis() [:500]

Output:

S

HUAWEI

Step 8

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

out[15]: [P tac’, 27.20849603364463),

("bad®, 20.412617983836436),
("heart’, 11.22133T38E9212946),
("dull’, 11.201724866155445),

i’ bnrlng . 11.0862733321370658),

(" performances’, 9.815627249844535),
(" touching’, 9.6556806%914542597),

(" Just’, B8.954255895148517),
("flat’, 8. T734006288727853),
("feels’, B.3841956898%963),

(" powerful’, B.266T3I3528314978),
(’engr0551ng . B.236206104587062),
(’enjuyable . 8. 208083904518238),
(" fun', T.842390516326061),
(’pnrtralt 7. T408A0142185%A8%9) ,
(" an 1. 685?5191535114),

(’rare . T.ATIEI0003347141),
{"g0lid’, T.60B473895621686),

(" tedious", 7.160T26B201200775),

Single sentence test

Test the prediction result of a single sentence:

Input:

Page 22

svm_classifier.single_predict("beautiful actors, great movie")

Output:

In [16]: svm_classifier.single_predict(“beautiful actors, great movie™)

out[16] 1 positive’

Input:

svm_classifier.single_predict("it's really boring")

Output:

In [17]: svm_classifier.single_predict("it’ = really boving”)

out[17]: "negative’

2.3.4 TextCNN Text Classification

Step 1

Create a notebook file and select the TensorFlow-2.1.0 environment.

Az

HUAWEI

Step 2

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Upload 4

Notebook:

Name
Conda-python3
Pytorch-1.4.0 kB
R-3.6.1 MB

TensorFlow-2.1.0

Other
Text File
Folder

Terminal

Importing Related Library

Page 23

Step 3

Input:

import re

import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.metrics import classification_report

Data preprocessing

def clean_str(string):

Tokenization/string cleaning for all datasets except for SST.

Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py

string = re.sub(r"[AA-Za-z0-9(),!?\'\']", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", ", ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \(", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()

def load_data_and_labels(positive_data_file, negative_data_file):

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 24

Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.

Load data from files

positive_examples = list(open(positive_data_file, "r", encoding='utf-8").readlines())
positive_examples = [s.strip() for s in positive_examples]

negative_examples = list(open(negative_data_file, "r", encoding='utf-8').readlines())
negative_examples = [s.strip() for s in negative_examples]

Split by words

x = positive_examples + negative_examples

x = [clean_str(sent) for sent in x]

X = np.array(x)

Generate labels

positive_labels = [1] * len(positive_examples)

negative_labels = [0] * len(negative_examples)

y = np.concatenate([positive_labels, negative_labels], 0)

shuffle_indices = np.random.permutation(np.arange(len(y)))
shuffled_x = x[shuffle_indices]
shuffled_y = y[shuffle_indices]

return shuffled_x, shuffled_y

Load data:

positive_data_file = 'data/rt-polarity.pos'
negative_data_file = 'data/rt-polarity.neg'
X, y = load_data_and_labels(positive_data_file, negative_data_file)

Show data features:
x[:5]

Output:

In [4]: x[:8]

Out[4]: array([punpkin means to be an outrageous dark satire on fraternity life , but its ambitions far exceed the abilities of writer adam lavsom
broder and his co director , tony r abrams , in their feature debut’,
*an emotionally strong and politically potent piece of cinema’,
“hawke draws out the best from his large cast in beautifully articulated portrayals that are subtle and zo0 expressive they can sustal
n the poetic flights in burdette "= dialogue”,
*the plot twists give 1 am trying to break your heart an attraction it desperately needed’,
smarter than itz commercials make it seem’], dtype= <U266°)

Show data labels:
y[:5]

Output:

In [5]: w[:8]

out[5]: array(l0, 1, 1, 1, 11}

Input:

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 25

vocab = set()
for doc in x:
for word in doc.split(' '):
if word.strip():
vocab.add(word.strip().lower())

write to vocab.txt file
with open('data/vocab.txt', 'w') as file:
for word in vocab:

file.write (word)

file.write("\n")
test_size = 2000
x_train, y_train = x[:-2000], y[:-2000]
x_test, y_test = x[-2000:], y[-2000:]
label_map = {0: 'negative', 1: 'positive'}

class Config():
embedding_dim = 100 # word embedding dimention
max_seq_len = 200 # max sequence length
vocab_file = 'data/vocab.txt' # vocab_file_length
config = Config()

class Preprocessor():
def __init__(self, config):
self.config = config
initial the map of word and index
token2idx = {"[PAD]": 0, "[UNK]": 1} # {word: id}
with open(config.vocab_file, 'r') as reader:
for index, line in enumerate(reader):
token = line.strip()
token2idx[token] = index+2

self.token2idx = token2idx
def transform(self, text_list):
tokenization, and transform word to coresponding index
idx_list = [[self.token2idx.get(word.strip().lower(), self.token2idx['[UNK]']) for word in
text.split(' ')] for text in text_list]
idx_padding = pad_sequences(idx_list, self.config.max_seq_len, padding="post')

return idx_padding

preprocessor = Preprocessor(config)
preprocessor.transform(['l love working', 'l love eating'])

Output:

e

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 26

o
=1

) .':" .':" II.T.I .':" .':" .":" Il.?.l .':" .':" .":" I-\.T.l .':" .":" II.T.I .':" .':" .":" I-\.T.l .':" .':" II.T.I o~ 1o .":" Il.?.l .':" .':" .":" I-\.T.l .':" .":" II.T.I .':" .':" .":" I-\.T.l .':" .':" II.T.I .':" .':" .":" Il.?.l .':" o= 1

8783,

o T e T e T e TR e T e e e Y e Y e T e T e T e T e e Y e Y e Y e T e B e T
o I e B B e e e e e e e e e Y e e e e e e e e}

o o i o o o e o N e o e o o o [o o o o o)]

o e e R e N e Y e e e IO e e e N e Y e O e R e QO e e Y e e Y e IO e Y e}
u u Lh u u Lh u u u u u u Lh Lh u u u u u u Lh u

Il:l Il:l .l:l Il:l Il:l I!:l Iﬁ Il:l Il:l Il:l Il:l Il:l I!:l .l:l Il:l Il:l Il:l Iﬁ Il:l Il:l .l:l Il:l
R N N N R NN RN NN

=1
=]
-

(s
i

" 148

|n |n |n |L_-‘ |n |n |n |L_-‘ |n |n |n |n |n |n |L_-‘ |n |n |n |n |n |n |L_-‘ |m |n |n |L_-‘ |n |n |n |n |n |n |L_-‘ |n |n |n |n |n |n |L_-‘ |n |n |n |L_-‘ |n |m

736 57 31, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0,) 0,
0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
0, 0,) 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0,) 0,
0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
0, 0,) 0,
0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0,) 0,
0, 0,) 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0,) 0,

3

Fpe=int3Z]

S

L.
o+

Step 4 Defines the TextCNN main class, including model building, training, and test
functions.

class TextCNN(object):
def __init__(self, config):
self.config = config
self.preprocessor = Preprocessor(config)
self.class_name = {0: 'negative’, 1: 'positive'}

def build_model(self):
build model architecture
idx_input = tf keras.layers.Input((self.config.max_seq_len,))
input_embedding = tf.keras.layers.Embedding(len(self.preprocessor.token2idx),
self.config.embedding_dim,
input_length=self.config.max_seq_len,
mask_zero=True) (idx_input)

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 27

convs =[]
for kernel_size in [2, 3, 4, 5]:
¢ = tf.keras.layers.Conv1D(128, kernel_size, activation="relu') (input_embedding)
¢ = tf.keras.layers.GlobalMaxPooling1D() (c)
convs.append(c)
fea_cnn = tf keras.layers.Concatenate() (convs)
fea_cnn = tf keras.layers.Dropout(rate=0.5) (fea_cnn)
fea_dense = tf.keras.layers.Dense(128, activation="relu') (fea_cnn)
fea_dense = tf.keras.layers.Dropout(rate=0.5) (fea_dense)
fea_dense = tf.keras.layers.Dense(64, activation="relu') (fea_dense)
fea_dense = tf.keras.layers.Dropout(rate=0.3) (fea_dense)
output = tf.keras.layers.Dense(2, activation='softmax') (fea_dense)

model = tf keras.Model(inputs=idx_input, outputs=output)
model.compile(loss="sparse_categorical_crossentropy",
optimizer='adam’,
metrics=['accuracy'])

model.summary()
self.model = model

def fit(self, x_train, y_train, x_valid=None, y_valid=None, epochs=5, batch_size=128, **kwargs):
train
self.build_model()

x_train = self.preprocessor.transform(x_train)
if x_valid is not None and y_valid is not None:
x_valid = self.preprocessor.transform(x_valid)

self.model.fit(
x=x_train,
y=y_train,
validation_data= (x_valid, y_valid) if x_valid is not None and y_valid is not None else
None,
batch_size=batch_size,
epochs=epochs,
**kwargs

)

def evaluate(self, x_test, y_test):
evaluate
x_test = self.preprocessor.transform(x_test)
y_pred_probs = self.model.predict(x_test)
y_pred = np.argmax(y_pred_probs, axis=-1)
result = classification_report(y_test, y_pred, target_names=['negative', 'positive'])
print(result)

def single_predict(self, text):
predict
input_idx = self.preprocessor.transform([text])
predict_prob = self.model.predict(input_idx)[0]
predict_label_id = np.argmax(predict_prob)

e

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 28

predict_label_name = self.class_name[predict_label _id]
predict_label_prob = predict_prob[predict_label_id]

return predict_label_name, predict_label_prob

Step 5 Initialize the model and train the model.

textcnn = TextCNN(config)

textenn.fit(x_train, y_train, x_test, y_test, epochs=10) # train

Output:

Non=, 15 E1323 emhedding [07 [0]
Nene, 19 4128 enbedding [0] [0]
1Max (Non=, 128 o
None=, 128 o
None, 128 o
Non=, 128 o
None, 512 o elckal_max_
clobal_ma:
glokal _ma:
elckal_max_
dropout (Dropoutz! Non=, 312 o concatenate [0] [0]
danss [(Danss None, 128 ESEE4 drepaowt 0] [0]
dropouz_1 (Dropout None, 128 o densel
dense_1 (Dense) None, 640 B2EE dropout_1 [0] [0]
drepouz_2 (Dropout None, 64} o denss_1[0]0[0]
dense_2 (Denss) None, 2} 130 drepout_2 [0 [0]

Step 6 Test Set Evaluation

3662 samples, validate cm 2000 samples

TE2us

G63as

fzample

fsample

TTus sample

BETus

G6Tus

B6Eus

GElas

BE3us

B71us

§3Tus

fszmple

fsample

fsample

fsample

fsample

fzample

fsample

: 0.B961 - accuracy: 04520

: 0.653% - accurasr: 0.6123

: 0.4222 - accurasy: 0.3147

: 0.173F - accuracy: 0.9412

: 0.07T3F - accuracy: 0.9761

val_loss

val_loss

val_loss

wval_loss

val_loss

val_loss

val_lass

wal_loss

val_loss

val_loss

wal_accurasy:
val_accuracy:
val_accurasy:
val_accurasy:
val_accuracr:
val_accurasy:
val_accuracy:
val_accurasy:

wal_accurasy:

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 29

| textcnn.evaluate(x_test, y_test) # Test Set Evaluation

Output:
In [15]: textcnn. evaluate(x_test, y_test)
precision recall fl-score support
negative 0.7 0.74 0.74 987
positive 0.75 0.76 0.78 1013
avg [/ total 0.75 0.75 0.75 2000

Step 7 Single sentence test

Test the prediction result of a single sentence:
Input:

| textcnn.single_predict("beautiful actors, great movie.") # single sentence predict

Output:

In [16]: textcnn.single predict(“beautiful actors, great movie.”) # single predict

Out[16]: (" positive’, 0.3899844)

Input:

textcnn.single_predict("it's really boring") # single sentence predict

Output:

In [17]: textenn.single predict("it's really boring”) # single predir:zi

out[17]: (negative’, 0.399944534)

2.4 Experiment Summary

This chapter introduces the implementation of text classification tasks in NLP, through an
application case of sentiment analysis. And this chapter compares the differences between
three algorithms: Naive Bayes, SVM, and TextCNN. Through experiments, trainees can
understand text classification tasks and Naive Bayes, SVM and TextCNN algorithms deeply.

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 30

3 Machine Translation

3.1 Introduction

This experiment describes how to use TensorFlow to build a machine translation model
based on the “encoder-decoder” architecture and use the “attention” mechanism to further

enhance the effect.

3.2 Objective

e Understand the basic principles of the encoder-decoder architecture.

® Understand the algorithm process of machine translation.

e Master the method of building a machine translation model using TensorFlow.

3.3 Procedure

Step 1 Go to the notebook home page, create a folder, and rename the folder

machine_translation.

Files Running

Select items to perform actions on them.

0o ~

(O 3 huawei_cloud_ei

[0 [text_classification

Total Records: 2

Files Running

Rename | Move n

=21~ m

[0 [huawei_cloud_ei

[0 [text_classification

D Untitled Folder

Upload
Notebook
Name ¥
Conda-python3
Pytorch-1.4.0

R-36.1

New +

TensorFlow-2.1.0

Other.

Text File

Terminal

Upload

Name ¥ Last Modified
an hour ago
41 minutes ago

seconds ago

New +

File size

(5]

e

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 31

Rename directory

Enter a new directory name:

machine_translatio ‘

Cancel | Rename

Step 2 Click the created machine_translation folder.

Files Running ModelArts Examples

Select items to perform actions on them. Upload | New~ | &

z
(Jo | ~ Wm/ machine_translation Name ¥ Last Modified File size
[} seconds ago

The notebook list is empty.

10 w| Total Records: 0

Step 3 Create a notebook file and select the TensorFlow-2.1.0 environment.

Upload |[New~ || &

Notebook:

Conda-python3
Pytorch-1.4.0

Runnf R-3.6.1 kB

TensorFlow-2.1.0

Name wlr.

kB
Runnj Other kB
1 Text File
Runnin kB
Folder
Runnin Terminal kB

Running a minute ago 43.3kB

18 minutes ago 3.02 MB

Step 4 Downloading Data

Input:

I wget https://huawei-ai-certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-
Al%20EI%20Developer/V2.1/spa-eng.zip

Output:

S

HUAWEI

In [1]:

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

! wget https://hoip—ed. obs. conorth—4. nyhuaweicloud. con/spa—eng. zip

—2020-10-09 20:19:50— https:/heip-ei. obs. en—nor th—d. nphuavedcloud. con/spa-eng. zip

Resolving proxy-notebook. modelarts—dew—proxy. com (proxy-notebook. modelarts—dev—proxy. con)... 192.168.0.172
Connecting to proxy—notebook.nodelarts—dev—proxy. com (proxy—notehook. nodelarts—dev—proxy. con) | 192. 168. 0. 172] :8083. . .
Proxy request sent, awaiting response... 200 0K

Length: 2633744 (2.5M) [application/zip]

Saving to: ‘spa—eng.zip’

spa—eng. zip 1004 [—————>] L5 —. -EB/s in 0.01s

2020-10-09 20:18:50 (194 MB/s) - ‘spa—eng.zip’ saved [2633744/2633744]

Step 5 Decompressing Data

Input:

connected.

Page 32

‘!unzip spa-eng.zip

Output:

In [2]: lunzip spa—eng. zip

hrchive: spaeng. zip

creating: spa—eng/
inflating: spa—eng/_about. txt
inflating: spa—eng/spa. txt

Step 6 Importing Related Library

Input:

import tensorflow as tf

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split

import unicodedata
import re

import numpy as np
import os

import io

import time

Step 7 Specifying the data path

Input:

| path_to_file = "./spa-eng/spa.txt" ## dataset file

Step 8 Defining a Preprocessing Function

Preprocessing includes:

® Converts the unicode file to ascii

® Replace particular characters with space

® Add a start and end token to the sentence

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 33

Input:

Converts the unicode file to ascii
def unicode_to_ascii(s):
return ".join(c for c in unicodedata.normalize('"NFD', s)
if unicodedata.category(c) !="'Mn")

def preprocess_sentence(w):
w = unicode_to_ascii(w.lower().strip())

creating a space between a word and the punctuation following it

eg: "he is a boy." => "he is a boy ."

Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-
white-spaces-keeping-punctuation

w = re.sub(r"([2.L,s1)", r" \1 ", w)

w = ressub(r'[" "]+, " ", w)

replacing everything with space except (a-z, A-Z, ".", "?", "I", ",")
w = resub(r'[Aa-zA-Z?2.1,¢1+", " ", W)

w = w.strip()

adding a start and an end token to the sentence

so that the model know when to start and stop predicting.
w = '<start> ' + w + ' <end>'

return w

Preprocessing test:

Input:

en_sentence = u"May | borrow this book?"

sp_sentence = u";Puedo tomar prestado este libro?"
print(preprocess_sentence(en_sentence))
print(preprocess_sentence(sp_sentence).encode('utf-8'))

Output:
In [4]: en_sentence = u'Nay I borrow this book?”
sp_sentence = u”iPusdo tomar prestado este libra?”
print (preprocess_sentence (en_sentence))
print (preprocess_sentence (sp_sentence). encode (' utf—5"))
{start? may i borrow this book % <{end>
b'<{start> \xc2\zbf puedo tomar prestado este libro 7 {end>”
Input:

1. Remove the accents
2. Clean the sentences
3. Return word pairs in the format: [ENGLISH, SPANISH]
def create_dataset(path, num_examples):
lines = io.open(path, encoding="UTF-8').read().strip().split(‘\n')

word_pairs = [[preprocess_sentence(w) for w in Lsplit('\t')] for lin lines[:num_examples]]

return zip(*word_pairs)

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 34

en, sp = create_dataset(path_to_file, None)
print(en[-1])
print(sp[-1])

Output:
In [6]: en, sp = create dataset(path_to_file, None)
print (en[-11)
print (sp[-1]

start> if yo t to sound like a nativ

aker , you must be willing to practice saying the same sentence over and over in the same way
that banjo pl. practice the same phra er and over until they can play it correctly and at the desired tempo . <end
start> si qu s sonar como un hablante native , debes estar dispuesto a practicar diciendo la misma frase una v otra vez de la misma mane
ra en que un musico de banjo practica el mismo fraseo una v otra vez hasta que lo puedan tocar correctamente v en el tiempo esperado . <end

Step 9 Load dataset

The operations include:
® |oad the original data set.
® Preprocessing
® (Convert text to ID

Input:

def tokenize(lang):
lang_tokenizer = tf keras.preprocessing.text.Tokenizer(
filters=")
lang_tokenizer.fit_on_texts(lang)

tensor = lang_tokenizer.texts_to_sequences(lang)

tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor,
padding="post')

return tensor, lang_tokenizer
def load_dataset(path, num_examples=None):
creating cleaned input, output pairs

targ_lang, inp_lang = create_dataset(path, num_examples)

input_tensor, inp_lang_tokenizer = tokenize(inp_lang)
target_tensor, targ_lang_tokenizer = tokenize(targ_lang)

return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer
Try experimenting with the size of that dataset
num_examples = 30000

input_tensor, target_tensor, inp_lang, targ_lang = load_dataset(path_to_file, num_examples)

Calculate max_length of the target tensors
max_length_targ, max_length_inp = target_tensor.shape[1], input_tensor.shape[1]

Creating training and validation sets using an 80-20 split
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val =

train_test_split(input_tensor, target_tensor, test_size=0.2)

Show length

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 35

| print(len(input_tensor_train), len(target_tensor_train), len(input_tensor_val), len(target_tensor_val))

Output:
24000 24000 &0 BO00

Convert text to ID:

Input:

def convert(lang, tensor):
for t in tensor:
if t'=0:
print ("%d ----> %s" % (t, lang.index_word[t]))

print ("Input Language; index to word mapping")
convert(inp_lang, input_tensor_train[0])

print ()

print ("Target Language; index to word mapping")
convert(targ_lang, target_tensor_train[0])

Output:

Input Language; index to word mapping
1 —> <ztart>

12 —> ne

12058 —» muero
24 —» por

413 ——» werte
3 —> .

2 ——>» <end>

Target Language; index to word mapping

1 ¢ lztartr
§ —» 1

18 —>m

971 —» dying
15 —>» to

Td ——> zee

B ——>» ou
33— .

2 —>» <end>

Step 10 Convert the file to tf.data.Dataset.

Input:

BUFFER_SIZE = len(input_tensor_train)

BATCH_SIZE = 64

steps_per_epoch = len(input_tensor_train)//BATCH_SIZE
embedding_dim = 256

units = 1024

vocab_inp_size = len(inp_lang.word_index)+1

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 36

vocab_tar_size = len(targ_lang.word_index)+1

dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train,
target_tensor_train)).shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)

example_input_batch, example_target_batch = next(iter(dataset))
example_input_batch.shape, example_target_batch.shape

Output:

Tn [14]: example_input_batch, example_target_batch = next(iter (dataset))
example_input_batch. shape, example_target_batch. shape‘

out[14]: (TensorShape ([84, 161}, TensorsShape([&d, 111))

Step 11 Defining an Encoder

Input:

class Encoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):

super(Encoder, self).__init_ ()

self.batch_sz = batch_sz

self.enc_units = enc_units

self.embedding = tf keras.layers.Embedding(vocab_size, embedding_dim)

self.gru = tf.keras.layers.GRU (self.enc_units,
return_sequences=True,
return_state=True,
recurrent_initializer="glorot_uniform’)

def call(self, x, hidden):
x = self.embedding(x)
output, state = self.gru(x, initial_state = hidden)
return output, state

def initialize_hidden_state(self):
return tf.zeros((self.batch_sz, self.enc_units))

Input:

encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)

sample input

sample_hidden = encoder.initialize_hidden_state()

sample_output, sample_hidden = encoder(example_input_batch, sample_hidden)

print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape))
print (‘Encoder Hidden state shape: (batch size, units) {}'.format(sample_hidden.shape))

Output:

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 37

In [16]: encoder = Encoder(vocab_inp_size, embedding_dim, wnits, BATCH SIZE)

sample input

zample_hidden = encoder.initialize_hidden_state()

sanple_output, sanple_hidden = encoder (sxample_input_batch, sample_hidden)

print (" Encoder output shape: (batch size, sequence length, units) {}’.format(sample_output. shape))
print (" Encoder Hidden state shape: (batch size, units) {}7.format(sample_hidden. shape))

Encoder output shape: (batch size, sequence length, wnits) (64, 16, 1024)
Encoder Hidden state shape: (batch size, wnits) (64, 1024)

Step 12 Defining the Attention Layer

Input:

class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units):
super(BahdanauAttention, self).__init_ ()
self. W1 = tf keras.layers.Dense(units)
self.W2 = tf keras.layers.Dense (units)
self.V = tf keras.layers.Dense(1)

def call(self, query, values):
query hidden state shape == (batch_size, hidden size)
query_with_time_axis shape == (batch_size, 1, hidden size)
values shape == (batch_size, max_len, hidden size)
we are doing this to broadcast addition along the time axis to calculate the score
query_with_time_axis = tf.expand_dims(query, 1)

score shape == (batch_size, max_length, 1)
we get 1 at the last axis because we are applying score to self.V
the shape of the tensor before applying self.V is (batch_size, max_length, units)
score = self.V(tf.nn.tanh(
self. W1 (query_with_time_axis) + self.W2(values)))

attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)

context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)

return context_vector, attention_weights

Input:

attention_layer = BahdanauAttention(10)
attention_result, attention_weights = attention_layer(sample_hidden, sample_output)

print("Attention result shape: (batch size, units) {}".format(attention_result.shape))
print("Attention weights shape: (batch_size, sequence_length, 1) {}".format(attention_weights.shape))

Output:

In [18]: attention_layer = Bahdanaukttention(10)
attention_result, attention_weights = attention_layer (sample_hidden, sample_sutput)

print(“Attention result shape: (hatch size, units) {}”.format(attention_result. shape))
print(“Attention weights shape: (batch_size, sequence_length, 1) {}*.format(attention_weights. shape))|

Attention result shape: (batch size, units) (G4, 1024)
Attention weights shape: (batch_size, sequence_length, 1) (64, 18, 1)

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Step 13 Defining a Decoder

Input:

Page 38

class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):

super(Decoder, self).__init_ ()

self.batch_sz = batch_sz

self.dec_units = dec_units

self.embedding = tf keras.layers.Embedding(vocab_size, embedding_dim)

self.gru = tf.keras.layers.GRU (self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform’)

self.fc = tf keras.layers.Dense(vocab_size)

used for attention
self.attention = BahdanauAttention(self.dec_units)

def call(self, x, hidden, enc_output):

enc_output shape == (batch_size, max_length, hidden_size)
context_vector, attention_weights = self.attention(hidden, enc_output)

x = self.embedding(x)

x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

passing the concatenated vector to the GRU
output, state = self.gru(x)

output shape == (batch_size * 1, hidden_size)
output = tf.reshape(output, (-1, output.shape[2]))

output shape == (batch_size, vocab)
x = self.fc(output)

return x, state, attention_weights

x shape after passing through embedding == (batch_size, 1, embedding_dim)

x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)

Input:

decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE)

= decoder(tf.random.uniform((BATCH_SIZE, 1)),
sample_hidden, sample_output)

sample_decoder_output, _,

print (‘Decoder output shape: (batch_size, vocab size) {}'.format(sample_decoder_output.shape))

Output:

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 39

In [20]: decoder = Decoderivocab_tar_size, embedding dim, units, BATCH_SIZE)

sanple_decoder_output, _, _ = decodex (tf.random. uniform ((BATCH SIZE, 1)),
sample_hidden, sample output)

print (' Decoder output shape: (hatch_size, wocab size) {}'.format(sample_decoder_output. shapa))l

Decoder output shape: (batch_size, woeab size) (64, 4935)

Step 14 Define optimizers and losses

Input:

optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none")

def loss_function(real, pred):

mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)

mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask

return tf.reduce_mean(loss_)

Step 15 Setting the checkpoint storage path

Input:

checkpoint_dir = "./training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,

encoder=encoder,
decoder=decoder)

Step 16 Train model

The operations include:

Input:

Pass the input through the encoder which return encoder output and the encoder
hidden state.

The encoder output, encoder hidden state and the decoder input (which is the
start token) is passed to the decoder.

The decoder returns the predictions and the decoder hidden state.

The decoder hidden state is then passed back into the model and the predictions
are used to calculate the loss.

Use teacher forcing to decide the next input to the decoder.

Teacher forcing is the technique where the target word is passed as the next
input to the decoder.

The final step is to calculate the gradients and apply it to the optimizer and
backpropagate.

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 40

@tf.function
def train_step(inp, targ, enc_hidden):
loss =0

with tf.GradientTape() as tape:
enc_output, enc_hidden = encoder(inp, enc_hidden)

dec_hidden = enc_hidden

Teacher forcing - feeding the target as the next input
for t in range(1, targ.shape[1]):
passing enc_output to the decoder

loss += loss_function(targ[:, t], predictions)

using teacher forcing
dec_input = tf.expand_dims(targ[;, t], 1)

batch_loss = (loss / int(targ.shape[1]))

variables = encoder.trainable_variables + decoder.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))

return batch_loss

dec_input = tf.expand_dims([targ_lang.word_index['<start>']] * BATCH_SIZE, 1)

predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)

Input:

EPOCHS =10

for epoch in range(EPOCHS):
start = time.time()

enc_hidden = encoder.initialize_hidden_state()
total_loss = 0

for (batch, (inp, targ)) in enumerate(dataset.take(steps_per_epoch)):
batch_loss = train_step(inp, targ, enc_hidden)
total_loss += batch_loss

if batch % 100 == 0:
print("Epoch {} Batch {} Loss {:.4f}".format(epoch + 1,
batch,

saving (checkpoint) the model every 2 epochs
if (epoch + 1) % 2 ==0:
checkpoint.save(file_prefix = checkpoint_prefix)

print('"Epoch {} Loss {:.4f}.format(epoch + 1,
total_loss / steps_per_epoch))

batch_loss.numpy()))

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 41

| print(‘Time taken for 1 epoch {} sec\n'.format(time.time() - start))

Output:

Epoch 5 Batch (0 Loss 0.
Epoch 5 Batch 100 Loss
Epoch 5 Batch 200 Loss
Epoch 5 Batch 300 Loss
Epoch 5 Lozz 0. 4426

Time taken for 1 epoch

Epoch & Batch O Loss 0.
Epoch & Batch 100 Loss
Epoch & Batch 200 Loss
Epoch & Batch 300 Loss
Epoch 6 Losgsz 0. 3065

Time taken for 1 epoch

Epoch 7 Batch O Las= 0.
Epoch 7 Batch 100 Loss
Epoch 7 Batch 200 Loszs
Epoch 7 Batch 300 Loss
Epoch 7 Lozs 0.2171

Time taken for 1 epoch

Epoch 8 Batch O Los= 0.
Epoch 8 Batch 100 Loszs
Epoch 8 Batch 200 Loszs
Epoch 8 Batch 300 Loszs
Epoch 8 Loszs 0.157%

Time taken for 1 epoch

Epoch © Batch O Loss 0.
Epoch © Batch 100 Loss
Epoch © Batch 200 Loss
Epoch © Batch 300 Loss
Epoch © Loszs 0. 1247

Time taken for 1 epoch

3601

0. 4021
0.3979
0. 5031

173.14544415473938 =zec

2918

0. 3203
0. 2655
0. 3163

173, 24TB36EETA52088 zec

2300

0.1718
0.1659
0.2615

173, 1076003518052 zec

0379

0. 1303
0. 1734
0.1818

173, 33197026252747 zec
1136

0.1121

0.1328

0.1415

173, 371985912323 sec

Epoch 10 Batch 0 Loss 0.08%94

Epoch 10 Batch 100 Loss 0. 1007
Epoch 10 Batch 200 Laszs 0.0915
Epoch 10 Batch 300 Laszs 0.1103

Epoch 10 Loszs 0. 1052
Time taken for 1 epoch

172, 96664118766 TED zec

Step 17 Defining test and visualization functions

Input:

result ="

def evaluate(sentence):
attention_plot = np.zeros((max_length_targ, max_length_inp))

hidden = [tf.zeros((1, units))]
enc_out, enc_hidden = encoder(inputs, hidden)

sentence = preprocess_sentence(sentence)

inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
maxlen=max_length_inp,
padding="'post')
inputs = tf.convert_to_tensor(inputs)

S

HUAWEI

HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 42

dec_hidden = enc_hidden
dec_input = tf.expand_dims([targ_lang.word_index['<start>']], 0)

for t in range(max_length_targ):

predictions, dec_hidden, attention_weights = decoder(dec_input,
dec_hidden,
enc_out)

storing the attention weights to plot later on

attention_weights = tf.reshape(attention_weights, (-1,))

attention_plot[t] = attention_weights.numpy()

predicted_id = tf.argmax(predictions[0]).numpy()

result += targ_lang.index_word[predicted_id] + "'

if targ_lang.index_word[predicted_id] == '<end>":
return result, sentence, attention_plot

the predicted ID is fed back into the model
dec_input = tf.expand_dims([predicted_id], 0)

return result, sentence, attention_plot

function for plotting the attention weights
def plot_attention(attention, sentence, predicted_sentence):

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(1, 1, 1)
ax.matshow (attention, cmap='viridis')

fontdict = {'fontsize": 14}

ax.set_xticklabels(["] + sentence, fontdict=fontdict, rotation=90)
ax.set_yticklabels(["] + predicted_sentence, fontdict=fontdict)

ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

plt.show()

def translate(sentence):

result, sentence, attention_plot = evaluate(sentence)

print(‘Input: %s' % (sentence))
print('Predicted translation: {}'.format(result))

attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))]
plot_attention(attention_plot, sentence.split(' '), result.split(' "))

Step 18 Loading a model offline

Input:

| # restoring the latest checkpoint in checkpoint_dir

e

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide

Page 43

| checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

Step 19 Single sentence translation test

Input:

| translate(u'hace mucho frio aqui.")

Output:
In [23]: translate(u hace muche fris agui.’)
Input: <start’ hace mucho frioc agui . {end>
Predicted translation: it = wery cold here . <end>
~
o
L o ~
o @ = =3 - o
] &] = El 2
2 = E = g &
it
s
very
cold
here
<end>
Input:

translate(u'esta es mi vida.")
Output:

e

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 44

In [30]: translate(u esta es mi vida.’)|

Input: {start} esta es mi vida . Cend>
Fredicted translation: this is my life . <end>

~
e
o
@
i
7]
v

esta
vida
<end>

s
m

this

life

<end>

Input:

translate(u'stodavia estan en casa?')
Output:

In [31]: translateiw itodavia estan en casa?’)|

Input: <start> & todavia estan en casa 7 <end>
Predicted translation: are you still at home 7 <end>

{start>
todavia
estan
en

casa
<end>

still

<end>

S

HUAWEI HCIP-AI-EI Developer V2.0 Natural Language Processing Lab Guide Page 45

3.4 Experiment Summary

This experiment describes how to use tensorflow to build a machine translation model
based on the encoder-decoder architecture and the attention mechanism. This experiment

helps trainees better understand the encoder-decoder architecture and principles of the
attention mechanism, and improves programming practice.

Huawei Al Certification Training

HCIP-AI-El Developer

ModelArts Lab Guide

ISSUE:2.0

N

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

wawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of
their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made
between Huawei and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided "AS IS" without warranties,
guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has
been made in the preparation of this document to ensure accuracy of the contents, but
all statements, information, and recommendations in this document do not constitute
a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129
People's Republic of China

Website: http://e.huawei.com

http://e.huawei.com/

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 1

Huawei Certificate System

Huawei's certification system is the industry's only one that covers all ICT technical
fields. It is developed relying on Huawei's 'platform + ecosystem' strategy and new ICT
technical architecture featuring cloud-pipe-device synergy. It provides three types of
certifications: ICT Infrastructure Certification, Platform and Service Certification, and ICT
Vertical Certification.

To meet ICT professionals' progressive requirements, Huawei offers three levels of
certification: Huawei Certified ICT Associate (HCIA), Huawei Certified ICT Professional
(HCIP), and Huawei Certified ICT Expert (HCIE).

HCIP-AI-El Developer V2.0 certification is intended to cultivate professionals who
have acquired basic theoretical knowledge about image processing, speech processing,
and natural language processing and who are able to conduct development and
innovation using Huawei enterprise Al solutions (such as HUAWEI CLOUD El), general
open-source frameworks, and ModelArts, a one-stop development platform for Al
developers.

The content of HCIP-AI-EI Developer V2.0 certification includes but is not limited to:
neural network basics, image processing theory and applications, speech processing
theory and applications, natural language processing theory and applications,
ModelArts overview, and image processing, speech processing, natural language
processing, and ModelArts platform development experiments. ModelArts is a one-stop
development platform for Al developers. With data preprocessing, semi-automatic data
labeling, large-scale distributed training, automatic modeling, and on-demand model
deployment on devices, edges, and clouds, ModelArts helps Al developers build models
quickly and manage the lifecycle of Al development. Compared with V1.0, HCIP-AI-EI
Developer V2.0 adds the ModelArts overview and development experiments. In
addition, some new El cloud services are updated.

HCIP-AI-El Developer V2.0 certification proves that you have systematically
understood and mastered neural network basics, image processing theory and
applications, speech processing theory and applications, ModelArts overview, natural
language processing theory and applications, image processing application
development, speech processing application development, natural language processing
application development, and ModelArts platform development. With this certification,
you will acquire (1) the knowledge and skills for Al pre-sales technical support, Al
after-sales technical support, Al product sales, and Al project management; (2) the
ability to serve as an image processing developer, speech processing developer, or
natural language processing developer.

Page 2

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

98 $SaY uoISSILUISURS |
NLPOSSY || PAYIII) 1Pmeny NGS NYIM wodeleq
\\’ uonesyR)
VIDOH Sunndwo) Wwabnu| abeios asnpnaseyu; 1O)
&/
v J21u3) eleq
JEUDISS340id 1] PaYILa) IBmenH
NIAIS pnopD Bunndwo) pnop
o5 uoneyIA)
v mn—mm-
uadx3 1D PaYILR) BMen| DISS pue uuopeld
: UoNEIUNWIWIO)
/- uorsIA Juabiau| 101 % eleq big
({ 3DH | asudiaug
& - e
K3yes dngng 3dueuly UoREIYIIA)D 1ENUIA 1DI

uonEedIII) 19IMeNH

IIMVNH &ﬂ.

01101104 UOREILIUD) lPMeNH

S

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 3

About This Document

Overview

This document is intended for trainees who are to take the HCIP-AI certification
examination and those who want to learn basic Al knowledge. After completing the
experiments in this document, you will be able to understand the Al development
lifecycle, and learn how to use ModelArts to develop Al applications, including data
uploading, data labeling, deep learning algorithm development, model training, model
deployment, and inference. ModelArts is a one-stop Al development platform that
provides a wide range of Al development tools. ExeML enables you to quickly build Al
applications without coding. Data Management provides data labeling and dataset
version management functions. Built-in algorithms can lower the threshold for Al
beginners to use the service. Custom deep learning algorithms help you program, train,
and deploy Al algorithms.

Description

This document introduces the following experiments, involving image classification and
object detection algorithms based on TensorFlow and MXNet deep learning engines, to
help you master practical capabilities of building Al applications.

e Experiment 1: ExeML — Flower Recognition Application

® Experiment 2: ExeML — Yunbao Detection Application

® Experiment 3: ExeML — Bank Deposit Application

e Experiment 4: Data Management — Data Labeling for Flower Recognition
® Experiment 5: Data Management — Data Labeling for Yunbao Detection
® Experiment 6: Data Management — Uploading an MNIST Dataset to OBS
® Experiment 7: Built-in Algorithms — Flower Recognition Application

e Experiment 8: Built-in Algorithms — Yunbao Detection Application

® Experiment 9: Custom Algorithms — Using Native TensorFlow for Handwritten Digit
Recognition

® Experiment 10: Custom Algorithms — Using MoXing-TensorFlow for Flower
Recognition

e Experiment 11: Custom Algorithms — Using Native MXNet for Handwritten Digit
Recognition

® Experiment 12: Custom Algorithms — Using MoXing-MXNet for Flower Recognition

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 4

Background Knowledge Required

This course is for Huawei's development certification. To better understand this course,
familiarize/equip yourself with the following:

® Basic language editing capabilities

e Data structure basics

® Python programming basics

® Basic deep learning concepts

® Basic TensorFlow and MXNet concepts

Experiment Environment Overview

ModelArts provides a cloud-based development environment. You do not need to install
one.

Experiment Data Overview

Download the datasets and source code used in this document from https://huawei-ai-
certification.obs.cn-north-4.myhuaweicloud.com/ENG/HCIP-ModelArts%20V2.1.rar

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 5

Contents

ADbOUL ThiS DOCUMENTceiiiiiieiieintntnnntstntetsasssessssessssssssssessssssssssssssssssesssssssssessosass 3
OVEIVIBW ...ttt ettt sese ettt sttt st b st s st b st e s e et s et b st atestae b astaeen 3
DIESCIIPLION ettt ese s essesstases st ta st s s e et R bbb ettt s s st ssessestese 3
Background Knowledge REGUITEM ...ttt es st bbb ettt bbbt 4
EXperiment ENVIFONMENT OVEIVIEWc.cvciriiireinieireiniciresseetsesste st asessesstsesstasese st ssesstasssesstasssesesasssesetasssesesssssesssens 4
EXPEIMENE DAA OVEIVIEWouerirercicicinciceneneeeeseseeesessesstssesssseseasesse s ssessessssssessssnesstsntssesnsesesnsssessssse s ssssssssssssesssssssssss 4
LI =5 (=11 T 7
1.1 ADOUL THIS LAD ottt ettt s sttt st 7
1.2 ODJECLIVES ..ottt s s s s sttt s AR eSS s eSS e b s sass e s s s s e e s s s e s et ens st st 7
1.3 EXperiment ENVIFONMENT OVEIVIEWc.ccoiuriiieriieieiecietesisteisisteas sttt se bt s b s sss st stas st et assssseassesesasssssenssnen 7
1. PTOCEAUIE ..ottt et ts s b s e s bbb s ettt st 8
1.4.1 Flower RecOgNItioN APPLCAtION ..ottt ts s eb bbbt ettt bbbt 8
1.4.2 CreatinNg @ PrOJECT ..ottt ettt st st sttt sttt e ettt 9
1.4.3 YUNDAO Detection APPLICATION ...ttt esseasees e esse ettt ss sttt saeeen 13
1.4.4 Bank Deposit Prediction APPLICATION ..ottt sttt ssstasessessessesseses 20
2 Data ManagemeENnt............iiiiiiiiinneiiiinneiiiesntnseesaesssesssessstssstssssssssssssssssssssasssssssnns 25
2.7 ADOUL THIS LAD ettt sttt bbb s bttt bbb eees 25
2.2 ODJECEIVES ...ttt sttt s sss e s b b s s s s s s b s s b s s s A s s e s bbb s s s b e s e s b en s sre s s st ensnses 25
2.3 PrOCEAUIE ...ttt ettt s s e s s bbb et bttt 25
2.3.1 Data Labeling for FLOWEr RECOGNITIONccovuririieririeirisircsisises sttt sssssssssssssssssssssssssesssssssessnsns 25
2.3.2 Data Labeling for YUNDA0 DELECTION ..ottt eseeset e sssesseesse st sssessesssesasesssnes 29
2.3.3 Uploading an MNIST Dataset t0 OBS ... niieecireeseieesseeecsseseessesssessesssesessssssesssesasesessessesssesssssnsesses 35
2.3.4 Uploading of flower classifiCation data SEt........o ettt ses st sssssesssssssaes 36
3 Built-in Algorithms for Deep Learning..........oeeieveevennennernssncnsensessnssssssssssssssssssssssses 38
3T ADOUL THIS LAD ettt sttt bbbt bbbttt bbb eeee 38
3.2 ODJECEIVES ...ttt b e s s s s et s s s e e s e s s e s b At s bR s s e ettt 38
3.3 PrOCEAUIE ...ttt et e s s b et bbbt 38
3.3.1 Flower RecOgNition APPLICATION......ceviieeeriereeteeeesiees st sesss s sssss s sesssssssssssssssssssssssssssssssesssssssesssssssessnses 38
3.3.2 YUNDAO Detection APPLICAtION ..ottt ssss s sssss s ssnssnes 45
4 Custom Basic Algorithms for Deep Learning...........ccccoveeevenvinnensensencsssensessnssnsesssnenes 49
4.1 ADOUL THIS LaDb ettt ses sttt e s bbbttt bbbt 49
A.2 ODJECLIVES c..vueeeeeeeerees ettt bs s sas s s s s st se bbb sas s A s s s s s ea S see s s re s s b e e A s s n s et nn s st st 49
4.3 USING MOXING w.ettrieririeieirieieis ettt sttt sttt as sttt s st st s ettt £ e ae s st s e as s st e s e s et e as b st a e s et et s st et assetsassetsassen 49

4.3.2 MOXiNG = FrameWOIK MOQULE ...ttt sssssssssss st ss s s sssssssssssssassssssssssssnssnsens 50

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 6
4.3.3 MOXiNG-TENSOIFLOW MOTULE ...ttt sssssssssssssssss st s s s sssssssassssssssssssssssssnnens 51
A PPOCEAUIE ...ttt st ss st ssss st ss s ss s s st s s s s s ses e s ass s s s st st es st enses s s s s es s s s ses s s s s esse b s ses st s sesanssnsensssnsnsnsas 53
4.4.1 Using Native TensorFlow for Handwritten Digit RECOGNItION.......c.cocvirirrerrereerrreirrirriress e 53
4.4.2 Using MoXing-TensorFlow for Flower RECOGNILION........c..ccivivrieeieieecteeeeieseesies sttt sassessassenens 62

4.4.3 Using Native MXNet for Handwritten Digit RECOGNItION.........courveieieeeeieeiereees et 71

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 7

ExeML

1.1 About This Lab

ExeML, a service provided by ModelArts, is the process of automating model design,
parameter tuning and training, and model compression and deployment with the labeled
data. The process is free of coding and does not require your experience in model
development, enabling you to start from scratch. This lab guides you through image
classification, object detection, and predictive analytics scenarios.

Image classification is based on image content labeling. An image classification model
can predict a label corresponding to an image, and is applicable to scenarios in which
image classes are obvious. In addition to predicting class labels in images, an object
detection model can also predict objects' location information, and is suitable for
complex image detection scenarios. A predictive analytics model is used to classify
structured data or predict values, which can be used in structured data predictive analysis
scenarios.

1.2 Objectives

This lab uses three specific examples to help you quickly create image classification,
object detection, and predictive analytics models. The flower recognition experiment
recognizes flower classes in images. The Yunbao detection experiment identifies Yunbaos'
locations and actual classes in images. The bank deposit prediction experiment classifies
or predicts values of structured data. After doing these three experiments, you can
quickly understand the scenarios and usage of image classification, object detection, and
predictive analytics models.

1.3 Experiment Environment Overview

If you are a first-time ModelArts user, you need to add an access key to authorize
ModelArts jobs to access Object Storage Service (OBS) on HUAWEI CLOUD. You cannot
create any jobs without an access key. The procedure is as follows:

® Generating an access key: On the management console, move your cursor over your
username, and choose Basic Information > Manage > My Credentials > Access Keys
to create an access key. After the access key is created, the AK/SK file will be
downloaded to your local computer.

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 8

e (Configuring global settings for ModelArts: Go to the Settings page of ModelArts, and
enter the AK and SK information recorded in the downloaded AK/SK file to authorize
ModelArts modules to access OBS.

MA

ModelArts

Dashboard
ExeML

Data Management v

DevEnviron v
Training Management =
Model Management v
Service Deployment hd

Subscribed Models

Al Market

Dedicated Resource Pools

Settings

Figure 1-1 ModelArts management console

1.4 Procedure

1.4.1 Flower Recognition Application

The ExeML page consists of two parts. The upper part lists the supported ExeML project
types. You can click Create Project to create an ExeML project. The created ExeML
projects are listed in the lower part of the page. You can filter the projects by type or

search for a project by entering its name in the search box and clicking Q .
The procedure for using ExeML is as follows:
e (Creating a project: To use ModelArts ExeML, create an ExeML project first.
e labeling data: Upload images and label them by class.
e Training a model: After data labeling is completed, you can start model training.

e Deploying a service and performing prediction: Deploy the trained model as a service
and perform online prediction.

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 9

1.4.2 Creating a Project

Step 1 Create a project.

On the ExeML page, click Create Project in Image Classification. The Create Image
Classification Project page is displayed. See Figure 1-2.

Create Image Classification Project = <BackioBent

Name exeML-adad
Description flower auto learning

20/256
Dataset Source Create Specify
Dataset Name dataset-ad4a4
Input Dataset Path @ fheip-ei-modelarts/moxing-flower-algrithm/ B
Output Dataset Path @ | /hcip-ei-modelarts/flower-dataout/

Label Set

Figure 1-2 Creating a project

Parameters:
Billing Mode: Pay-per-use by default
Name: The value can be modified as required.

Input Dataset Path: Select an OBS path for storing the dataset to be trained. Create an
empty folder on OBS first (Click the bucket name to enter the bucket. Then, click Create
Folder, enter a folder name, and click OK). Select the newly created OBS folder as the
training data path. Alternatively, you can import required data to OBS in advance. In this
example, the data is uploaded to the /modelarts-demo/auto-learning/image-class
folder. For details about how to upload data, see https://support.huaweicloud.com/en-
us/modelarts_fag/modelarts_05_0013.html. To obtain the source data, visit modelarts-
datasets-and-source-code/ExeML/flower-recognition-application/training-dataset.

Description: The value can be modified as required.

Step 2 Confirm the project creation.

Click Create Project. The ExeML project is created.

https://support.huaweicloud.com/en-us/modelarts_faq/modelarts_05_0013.html
https://support.huaweicloud.com/en-us/modelarts_faq/modelarts_05_0013.html

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 10

1.4.2.2 Labeling Data

Step 1 Upload images.

After an ExeML project is created, the Label Data page is automatically displayed. Click
Add Image to add images in batches. The dataset path is modelarts-datasets-and-
source-code/ExeML/flower-recognition-application/training-dataset. If the images
have been uploaded to OBS, click Synchronize Data Source to synchronize the images to
ModelArts. See Figure 1-3.

Labeled 44 | Unlabeled 12 1
® Add Image o Select Current Page Add Label Selected 0 images 2
el |:|
Cancel
All Labels 5
daisy 16 su
pugongying 5 Vani
se 9 g
unfl 7d su
yujinxiang 7 Kari
Training Configuration 3
Max Training Duration (h) @ 1
Advanced Settings S

Figure 1-3 Data labeling page of an image classification project

] NOTE

e The images to be trained must be classified into at least two classes, and each class
must contain at least five images. That is, at least two labels are available and the
number of images for each label is not fewer than five.

® You can add multiple labels to an image.
Step 2 Label the images.

In area 1, click Unlabeled, and select one or more images to be labeled in sequence, or
select Select Current Page in the upper right corner to select all images on the current
page. In area 2, input a label or select an existing label and press Enter to add the label
to the images. Then, click OK. The selected images are labeled. See Figure 1-4.

Add Label Selected 12 images.

Label ‘ I

Figure 1-4 Image labeling for image classification

Step 3 Delete or modify a label in one image.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 11

Click Labeled in area 1, and then click an image. To modify a label, click <“ on the right
of the label in area 2, enter a new label on the displayed dialog box, and click . To

delete a label, click o on the right of the label in area 2. See Figure 1-5.

All Labels 5
daisy 16 Ran]
pugongying 5 KA
rose 9 K]
sunflower 7 KA}
yujinxiang 7 Ran]

Figure 1-5 Deleting/Modifying a label in one image

Step 4 Delete or modify a label in multiple images.

In area 2, click the label to be modified or deleted, and click 4 on the right of the

label to rename it, or click I to delete it from multiple images. In the dialog box that
is displayed, select Delete label or Delete label and images that only contain this
label. See Figure 1-6.

Labeled 44 Unlabeled 12

@Addimage | TT Deletelmage [Synchronize Data Source Select Current Page Add Label Selected 14 images

Label

Figure 1-6 Deleting/Modifying a label in multiple images
1.4.2.3 Training a Model

After labeling the images, you can train an image classification model. Set the training
parameters first and then start automatic training of the model. Images to be trained
must be classified into at least two classes, and each class must contain at least five
images. Therefore, before training, ensure that the labeled images meet the
requirements. Otherwise, the Train button is unavailable.

Step 1 Set related parameters.

You can retain the default values for the parameters, or modify Max Training Duration
(h) and enable Advanced Settings to set the inference duration. Figure 1-7 shows the
training settings.

S

HUAWEI

Parameters:

Max Training Duration (h): If the training process is not completed within the

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Training Configuration

Ratios ()

w2

n (@D
\Z

N 0N S
price ¥2ZU.UUhour (2

voo3

Training Set Ratio:| 0.8

Validation Set Ratio: 0.2

300

Compute-intensive 1 instance (GPU) - |

Figure 1-7 Training settings

Page 12

maximum training duration, it is forcibly stopped. You are advised to enter a larger value
to prevent forcible stop during training.

Max Inference Duration (ms): The time required for inferring a single image is

proportional to the complexity of the model. Generally, the shorter the inference time,
the simpler the selected model and the faster the training speed. However, the precision

may be affected.

Step 2 Train a model.

After setting the parameters, click Train. After training is completed, you can view the
training result on the Train Model tab page.

1.4.2.4 Deploying a Service and Performing Prediction

Step 1 Deploy the model as a service.

After the model training is completed, you can deploy a version with the ideal precision
and in the Successful status as a service. To do so, click Deploy in the Version Manager
pane of the Train Model tab page. See Figure 1-8. After the deployment is successful,
you can choose Service Deployment > Real-Time Services to view the deployed service.

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 13
Version Manager C Training Details
Delete Successful Evaluation Result Custom Parameter

Jan 07, ® 0630 ® 1

70% s

Accuracy ® 0610 @ 500
09:12:38
GMT+08:00 @ 0705 ® -
00:02:22 ® o612

Classification Statistics

Label 4 FlScore 4 Precision $ Recall %

sunflower 0615 0.667 0571
daisy 0889 0.800 1.000

0.667 0583 0778

Figure 1-8 Deploying the model as a service

Step 2 Test the service.

After the model is deployed as a service, you can upload an image to test the service. The
path of the test data is modelarts-datasets-and-source-code/ExeML/flower-
recognition-application/test-data/daisy.jpg.

On the Deploy Service tab page, click the Upload button to select the test image. After
the image is uploaded successfully, click Predict. The prediction result is displayed in the
right pane. See Figure 1-9. Five classes of labels are added during data labeling: tulip,
daisy, sunflower, rose, and dandelion. The test image contains a daisy. In the prediction
result, "daisy" gets the highest score, that is, the classification result is "daisy".

Service Test Test Result

Running

Select the sound file you want to use to test the service Upload

"predicted_label”: "daisy",
"scores": [

"daisy",
"0.698"

"sunflower™,
T0AZR

"pugongying”,
"0.065"

Figure 1-9 Service testing

1.4.3 Yunbao Detection Application

The ExeML page consists of two parts. The upper part lists the supported ExeML project
types. You can click Create Project to create an ExeML project. The created ExeML
projects are listed in the lower part of the page. You can filter the projects by type or

search for a project by entering its name in the search box and clicking

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 14

The procedure for using ExeML is as follows:

e (Creating a project: To use ModelArts ExeML, create an ExeML project first.

e labeling data: Upload images and label them by class.

e Training a model: After data labeling is completed, you can start model training.

e Deploying a service and performing prediction: Deploy the trained model as a service
and perform online prediction.

1.4.3.1 Creating a Project

Step 1 Create a project.

On the ExeML page, click Create Project in Object Detection. The Create Object
Detection Project page is displayed. See Figure 1-10.

Create Object Detection Project < tecktobemt B Usage Guides
Billng Mode

Name exeML-a68d

dataset-a68d

Input Dataset Path (3) =]
Output Dataset Path (2) =}

Label Set

Figure 1-10 Creating a project.
Parameters:
Billing Mode: Pay-per-use by default

Name: The value can be modified as required.

Training Data: Create an empty folder on OBS and specify the OBS folder path as the
value of this parameter. In this example, /modelarts-demo/auto-learning/object-
detection is used. Alternatively, you can directly import data to OBS in advance. For
details, see 2.3.3 "Uploading an MNIST Dataset to OBS."

Description: The value can be modified as required.

Step 2 Confirm the project creation.

Click Create Project. The ExeML project is created.

1.4.3.2 Labeling Data

Step 1 Upload images.

e

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 15

After an ExeML project is created, the Label Data page is automatically displayed. Click
Add Image to add images in batches. Note that the total size of the images uploaded in
one attempt cannot exceed 8 MB. The dataset path is modelarts-datasets-and-source-
code/ExeML/yunbao-detection-application/training-dataset. The dataset contains
images of Yunbao, the mascot of HUAWEI CLOUD. If the images have been uploaded to
OBS, click Synchronize Data Source to synchronize the images to ModelArts. See Figure
1-11.

exeMLyunbao | < eack o Eeemit 1 Label Data @ 2 Tran Model @ 3 Deploy sevice 28 Dataset Verson B3 Usage Guide

G z
Labeled 31 Unlabeled 30 m
Add

Figure 1-11 Data labeling page of an object detection project

11 NOTE
® Each class of images to be trained must contain at least five images. That is, the
number of images for each label is not fewer than five.

® You can add multiple labels to an image.
Step 2 Label the images.

Enter the Unlabeled tab page and click an image to access its labeling page. See Figure
1-12. On the labeling page, draw a labeling box to frame out the target object. Ensure
that the box does not contain too much background information. Then, select a label. If
no label is available, input one and press Enter.

In this example, use the mouse to draw a box to frame the Yunbao and input yunbao as
the label name. See Figure 1-13.

HUAWEI HCIP-AI-El Developer V2.0 ModelArts Lab Guide Page 16
exeMLyunbao | < Back to ExehL ° Deploy - & e
Labeled 31 Unlabeled 30 m
@ add B synch " All Labels 1

< bxel exeMLyunbao previous(P) | 3/30 | Next(w) Labeling Progress: e S0%(31/61) Usage Guides

Operatl

[[244,1111,£910,1111,(910,597), 244,59,

Figure 1-13 Image labeling page

Step 3 Delete or modify a label in one image.
Click the Labeled tab and click the target image to enter its labeling page. Then, you can
delete or modify a label through either of the following methods:

e Method 1: Move the cursor to the labeling box, right-click, and choose Modify from
the shortcut menu to modify the label or choose Delete to delete the label.

A 4 .
HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 17
exeML-yunbao Previous| (P)| 3/30 | Next(N) Labeling Progress: se— 50%(31/61)

[m}
«
~
Q
Q
o
®
ES
@]

Unlabeled

1G_20180919_121140jpg

Figure 1-14 Deleting/Modifying a label in one image

e Method 2: Click the 4 or o) button on the right of the image to modify or
delete its label.

30 | Neaon) Labeling Progress: e S0%(31/61)

g
H

([244,1111,£910,1111,(910,597),(244,50.

D+e=d0OY O

Figure 1-15 Deleting a label and adding a new label in one image

Step 4 Delete or modify a label in multiple images.

In area 2 of the Labeled tab page, click s on the right of the target label to rename

it, or click u to delete it from multiple images. In the dialog box that is displayed,
select Delete label or Delete label and images that only contain this label. See Figure
1-16.

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 18
exeML-yunbao | < Back to BxeML 2 Train Model @ 3 Deploy Service 38 Dataset Version [Usage Guides
Labeled 32 Unlabeled 29

@ add [} synchronize Data Source Sl Cirisitpige All Labels 1]

= » o

Figure 1-16 Deleting/Modifying a label in multiple images
1.4.3.3 Training a Model

After labeling the images, you can train an object detection model. Set the training
parameters first and then start automatic training of the model. Each class of images to
be trained must contain at least five images. Therefore, before training, ensure that the
labeled images meet the requirements. Otherwise, the Train button is unavailable.

Step 1 Set the parameters.

You can retain the default values for the parameters, or modify Max Training Duration
(h) and enable Advanced Settings to set the inference duration. Figure 1-17 shows the
training settings.

Training Configuration .
+ Dataset Version Name V003

Training and Validation Ratios @ Training Set Ratio:| 0.8 @

Validation Set Ratio: 0.2

Incremental Training Version @ None -

Expected Inference Hardware NV_P4 v

Max Inference Time (Millisecond) 500

Max Training Time (Hour) 10

Instance Flavor | Compute-intensive 1 instance (GPU) v |

Price ¥20.00/hour @

Figure 1-17 Training settings

Parameters:

Max Training Duration (h): If the training process is not completed within the
maximum training duration, it is forcibly stopped. You are advised to enter a larger value
to prevent forcible stop during training.

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 19

Max Inference Duration (ms): The time required for inferring a single image is
proportional to the complexity of the model. Generally, the shorter the inference time,

the simpler the selected model and the faster the training speed. However, the precision
may be affected.

Step 2 Train a model.

After setting the parameters, click Train. After training is completed, you can view the
training result on the Train Model tab page.

1.4.3.4 Deploying a Service and Performing Prediction
Step 1 Deploying the model as a service

After the model training is completed, you can deploy a version with the ideal precision
and in the Successful status as a service. To do so, click Deploy in the Version Manager
pane of the Train Model tab page. See Figure 1-18. After the deployment is successful,
you can choose Service Deployment > Real-Time Services to view the deployed service.

exeMLbb23 < Backto ExeML 1 Label Data 2 Train Model @ 3 Deploy Service [Operation Guide
Version Manager (¢] Training Details
Deple
Delet Success ful Evaluation Result Custom Parame ter
Jan 07, @ 0942 ®
93%
2020
Accuracy y @ 0102 @ 500
102205
GMT+08:00 @ 0927 @ -
00:10:37 ® 0185

Classification Statistics

Label % Accuracy y + Precision] Recall 4

yunbao 50% 0.102 0942

Figure 1-18 Deploying the model as a service

Step 2 Test the service.

After the model is deployed, you can upload an image to test the service. The path of the
test data is modelarts-datasets-and-source-code/ExeML/yunbao-detection-
application/test-data.

On the Deploy Service tab page, click the Upload button to select the test image. After
the image is uploaded successfully, click Predict. The prediction result is displayed in the
right pane. See the following figures. In the prediction result, Yunbaos are framed out
with boxes and labeled with yunbao, and the related probabilities and coordinate values
are displayed in the right pane.

Az

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 20

exeML-bb23 < Back to ExeML 1 Label Data @ 2 Train Model @ 3 Deploy Service @

Version Manager C Service Test
o Prediction can be performed only when the service status is* @ Running
V001 (job18ab1770
a o Stop
D“”‘”‘”‘Jd Jan 07, 2020 10:37:43 GMT+ Select the sound file you want to use to test the service. Upload
eployet

When the service status is Running, you can add an image to test the service.

Service Status: Running

Figure 1-19 Uploading a test image
1 Label Data @ 2 Train Model & [+ Operation Gui

Service Test Test Result

Prediction can be performed only when the service status is " & Running

Select the sound file you want to use to test the service Upload m _
‘ ' -

A

"detection_classes": [

(RN

yunbao(100%) "yunbao™,
4 "yunbao”,
5 "yunbao™
1,
i "detection_boxes™: [
8 e
g 345.1921691894531,
10 104.70769500732422,
11 536.1450805664062,
12 290.99359130859375
13
14 L
15 321.731689453125,
') yunbao(100%) | . 16 443.2052917480469,
17 K2/ SATNARAAIRIDK
URL [AP Reference

A

Figure 1-20 Service testing

1.4.4 Bank Deposit Prediction Application

This experiment describes how to use ModelArts to predict the bank deposit.

Banks often predict whether customers would be interested in a time deposit based on
their characteristics, including the age, work type, marital status, education background,
housing loan, and personal loan.

Now, you can use the ExeML function of HUAWEI CLOUD ModelArts to easily predict
whether a customer would be interested in the time deposit. The procedure consists of
three parts:

® Preparing data: Download a dataset and upload it to OBS.

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 21

® Training a model: Use ModelArts to create a project for model training.

e Deploying a service and performing prediction: Deploy the trained model as a service
and test the prediction function.

1.4.4.1 Preparing Data

To upload the training dataset to an OBS bucket, perform the following steps:

Step 1 Find the train.csv file (training dataset) in the modelarts-datasets-and-source-
code/data-management/bank-deposit-prediction-application/dataset directory.

Step 2 Browse and understand the training dataset.

Table 1-1 Parameters and meanings

Parameter | Meaning Type Description

attr_1 Age Int Age of the customer

attr_2 Occupation String | Occupation of the customer

attr 3 Marital status String | Marital status of the customer
attr 4 Education status String | Education status of the customer
attr 5 Real estate String | Real estate of the customer

attr 6 Loan String | Loan of the customer

attr_7 Deposit String | Deposit of the customer

Table 1-2 Sample data of the dataset

attr_1 | attr_2 attr_3 attr_4 attr 5 | attr 6 | attr_7
58 management married | tertiary yes no no
44 technician single secondary yes no no
33 entrepreneur married | secondary | yes yes no
47 blue-collar married unknown yes no no
33 unknown single unknown no no no
35 management married tertiary yes no no

Step 3 Upload the training dataset file from your local computer to the OBS bucket. For
details about how to upload a file to OBS, see
https://support.huaweicloud.com/gs-obs/obs_gs_0001.html.

https://support.huaweicloud.com/qs-obs/obs_qs_0001.html

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 22

1.4.4.2 Training a Model

To create a project for model training using ModelArts, perform the following steps:

Step 1 Enter the ModelArts management console, and choose ExeML > Predictive
Analytics > Create Project to create a predictive analytics project. When creating
the project, select the training dataset uploaded to OBS in previous steps.

é f ExeML

ModelArts
L
Dashboard
| ExehL Image Classification Object Detection Predictive Analytics
Data Management v
[video| - [Video
Data Management ~ [Video
DevEnviron ~ Create Project Create Project Create Project
Training Management v
Model Management hd
Service Deployment v Project Name Project Type Training Status Training Dataset
Subscribed Models exeML-bb23 Object Detection Successful Jobs-modelartwhc/Mc
Al Market exeML-ee9b Image Classificat. Successful /obs-124c/FLOWER/

Dedicated Resource Pools

Settings

Figure 1-21 Creating a predictive analytics project

Create Predictive Analytics Project | < skt Operation Guide

* Billng Mode Pay-peruse

exeML-d093

Figure 1-22 Selecting the data path

Step 2 Click the project name to enter its Label Data page, preview the data and select
the training objective (specified by Label Column). The training objective here is
to determine whether the customer will apply for a deposit (that is, attr_7). Then,
set Label Column Data Type to Discrete value. Click Training.

e

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Page 23

HUAWEI
exeML-d083 | < Backto ExeML 2 Train Model 3 Deploy Service Bor
Data Preview ()

attr_1 attr 2 attr_3 attr_4 attr 5 attr 6 attr 7
310 bluecollar marie d secon dary yes no no
40 mana gement married tertiary yes yes no
38.0 technician single secon dary yes no no
39.0 technician ingle ~~~~~~_secon dary yes yes
39.0 blue-coll maried secon dary yes no
390 services ingle nknown yes no
400 technician ~m: arried tertiary yes no
340 services single secon dary yes no
560 technician marriec d secon dary yes yes
340 self-employed single secon dary yes no

10 ~ Total Records: 100 1 2 3 4 5 10 >

Figure 1-23 Training job parameters

Step 3 Wait until the training is completed and view the training result. You can check
the training effect of the model based on the evaluation result.

XeML-d093 | < Back to ExeML 1 Label Data @ 2Train Model © 3 Deploy Service
Version Manager Cc Training Details
Deploy| Jan 07, 2020 11:27:32 GMT+08:00 00:0322
020 11:27:25 GMT+08:00 roa
Custom Parameter
@ oty @ Dpiscrete value
Evaluation Result
Th old 10
0 0
4 48
0505 0
1 0
RO
e postive rate Preciion
q \}
i
| L e | |
v U5 05 07 08 09 3 01 02 03 04 a5 05 07 08 09

Figure 1-24 Model training management page

1.4.4.3 Deploying a Service and Performing Prediction

After the training job is completed, you can deploy the trained model as a prediction
service as follows.

Step 1 On the Train Model tab page, click Deploy in the upper left corner.
Step 2 On the Deploy Service page, test the prediction service.

Step 3 Use the following code for prediction. You only need to modify the parameters
under the req_data module.

{
"meta": {
"uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
2
"data": {
"count": 1,

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 24

"req_data": [
{

"attr_1": "58",

"attr_2": "management”,

"attr_3": "married",

"attr_4": "tertiary",

"attr_5": "yes",

"attr_6": "no",

"attr_7": "no"

exeML-d093 | < Backto ExeML 1 Label Data @ 2Train Model 3 Deploy Service @ B Operation 6

Version Manager c Service Test

07, 2020 11:34:16 GMT+08:00 st =}

Code Return Result

1": 0.9854009747505188,

Figure 1-25 Prediction test result

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 25

Data Management

2.1 About This Lab

The Data Management module of ModelArts allows you to upload data, label data,
create datasets, and manage data versions. This section mainly describes these functions.
The dataset files uploaded in this section will be used for subsequent custom algorithm
experiments. Labeling jobs completed in Data Management can also be used by training
jobs, but labeling jobs created in ExeML can be used only by ExeML. Data Management
and ExeML use the same labeling techniques.

2.2 Obijectives

Learn how to use OBS Browser to upload data.

Learn how to create datasets.

2.3 Procedure

2.3.1 Data Labeling for Flower Recognition
2.3.1.1 Creating dataset

Step 1 Learn the layout of the Datasets page.

The Datasets page lists all dataset. On this page, you can click Create Dataset to create
a dataset, or enter a dataset name in the search box in the upper right corner of the

dataset list and click ' to search for a dataset. See Figure 2-1.

e osuse . o M o« [

nnnnnnnnnn

N N N RS

W
HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 26

Figure 2-1 Dataset page

Parameters:

Name: name of a data labeling job. After you click the name, the job details page is
displayed.

Labeling Type: type of a data labeling job. Currently, labeling types include image
classification, object detection, sound classification, text classification, and text labeling.

Labeling Progress: labeling progress of a data labeling job, displaying also the total
number of images and the number of labeled images.

Created: time when a data labeling job was created.

Description: brief description of a data labeling job.

Operation: operations you can perform on a data labeling job, including:
® Publish: Publish dataset versions.

e Deploy Model: Deploy the dataset with algorithm.

Step 2 Create a dataset.

On OBS, create an empty folder (obs://hcip2-modelarts/data-manage/data-labeling-for-
flower-recognition/dataset/) to store images to be labeled, and create another empty
folder (obs://hcip2-modelarts/output/data-manage/ip-flower/) to store the labeling
result.

On ModelArts, click Create Dataset in the upper left corner of the Datasets page. Set
required parameters. Then, click Create. See Figure 2-2.

Create Dataset | ¢ sacktoDataset List B Usage Guides
Name dataset-ip-flower2

Description

Labeling Scene

A} Text FH Table [*] video @ Other

 Labeling Type

Object detection

Input Dataset Path (%) fhcip2-modelarts/data-manage/data-labeling-for-flower-recognition/dataset/ B
% Output Dataset Path (2) fhcip2-modelarts/output/data-manage/ip-flower/ B

Label Set

Team Labeling ()

mice Limited-time free

The dataset is billed based on the training and deployment duration. Pricing details

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 27
Figure 2-2 Parameter settings

After the job is created, click the job name to enter its details page.

Datasets [] Process Description | @ Help

Create Dataset Maximum datasets: 100; Remaining: 97 Alltypes - Enter a name. Q “ Card C

Name Labeling Type Labeling Progress (Labeled/Total) To-Be-Confimed/To~. Created + Description Operation

v flower-annotation Image classification 0% (0/50) To-be-confirmed: - Jan 07,2020 13:38:54 GM. - loy Model = Publish More ~

v Image 100% (48/48) To-be-confirmed: — Nov 15,2019 21:4412G -& ~ Publish
v Sound classification —100% (1/1) To-be-confirmed: — Nov 15,2019 21:30:12G -4 Publish More v
Figure 2-3 Datasets page
dataset-ip-flower < Back to Dataset List 7 Usage Guides Create Team Labeling Task Publish Import Modify
Dashboard Versions Data Features Labeling Progress
Labeling Typ Image classification n Vo001 Creat Sep 10, 2020 16:07:31 GMT+08:00

Pt
recognition/A4IEsE/

Labeling Progress Label Statistics Annotators' Progress
50 0 50 [Labels [l Labeled Samples
All Unlabelec Labeled

Figure 2-4 Datasets page

The images have been uploaded to OBS, click C to synchronize the images to
ModelArts. For details, see Step 1 in section 1.4.2.2 "Labeling Data."

2.3.1.2 Labeling Images
For details, see Step 2 in section 1.4.2.2 "Labeling Data."

2.3.1.3 Deleting or Modifying a Label in One Image
For details, see Step 3 in section 1.4.2.2 "Labeling Data."

2.3.1.4 Deleting or Modifying a Label in Multiple Images
For details, see Step 4 in section 1.4.2.2 "Labeling Data."
2.3.1.5 Publish a Dataset

After the labeling is complete, return to the Dataset Overview page.

dataset-flower

© Labeling Descrption E3 Usage Gu

Filter Crteria No filter criteria selected. Show e

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 28

Figure 2-5 Labeled

Click Publish on the labeling page. The dataset is automatically generated. See the
following figure. The published dataset can be directly used in training jobs.

dataset-flower | < Back to Dataset List

Labeling Progress Label Statistics Annotators' Progress

The dataset is ot a team-labeling dataset, so o annotators' progress statistics are
Hard Example Set olleted

Figure 2-6 Publish dataset

2.3.1.6 Managing Versioning

Choose Datasets > Version Manager. On the page that is displayed, you can view
the version updates of a dataset. The version name is automatically generated in the

form of vOOT After a dataset is created successfully, a temporary version is
automatically generated and named in the form of vOO7. To switch the directory, move
the cursor to the target version name, and then click Set to current directory to set

the version to the current directory. The Add File and Delete File operations in the
dataset directory are automatically saved to the temporary version. You can view the
number of added and deleted files on the Version Manager tab page.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 29

Publish New Version

#* Version Name V002 FEMEIEIE

© zERGiIE thard BFIZEhard-coefficient
S Amanifestiteh, SEERENIE
difficult, hard-coefficient, hard-reasonsE4S
. ANFExmlR, HiE0 sample.xml,
Splitting @ sample.manifest

* Format @ Default A

Description

Enable Hard example

Figure 2-7 Publish new version

dataset-ip-yunbao | < Back to Dataset Lis 5 Usage Guides [T Create Team Labeling Task Publish Import Modify

Dashboard Versions Data Features Labeling Progress
e V001
= 100% |+ m
QuecorngeOBLONT2

Sep 13, 2020 11:0921 GMT+08:00

Default

Figure 2-8 Version managment

2.3.2 Data Labeling for Yunbao Detection

Step 1 Create a dataset.

Log in to ModelArts and click Create Dataset. The Create Dataset page is displayed, as
shown in the following figure. After setting the parameters, click Create.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 30
Create Dataset | < sack to Dataset List > (s
* Name dataset-yunbac2
Description

0/256

* Labeling Scene O Audio TA] Text [Table [2] video @ Other

* Labeling Type

Image dlassification Object detection q

r
cat
[x] dog
L
“ Input Dataset Path (2) ‘ /heip2-modelarts/data-r data-labeling-for-yunbao-detection/d: / B
* Output Datpset Path (2) /hcip2-modelarts/output/data-manage/ip-yunbao/ B

Label Set

Team Labeling (2

mice Limited-time free

The dataset is billed based on the training and deployment duration. Pricing details

Figure 2-9 Creating dataset
Step 2 Label the data.

After the data labeling job is created, return to the job list and click the job name to
enter the labeling page. Upload the image dataset from modelarts-datasets-and-
source-code/data-management/data-labeling-for-yunbao-detection to this page and
label the images. The data is synchronized to the OBS path of the data labeling job by
default. Alternatively, you can import the images to OBS and click Synchronize Data
Source to synchronize them to ModelArts for labeling.

yunbao-dataset | < Back to Datase Dashboard

All61 Unlabeled 61 Labeled0 ToBe Confirmed 0 1 ‘
Filter Criteria No filer criteria selected.
@Add || T1Delete | | [Synchronize Data Source | | [Create Team Labeling Task firm Hard Example Auto Grouping ~ Select Curtent Page

ExportTo ~

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 31

Figure 2-10 Data labeling page of an object detection project

Click the Unlabeled tab in area 1, and then click an image in area 2. Then, frame out the
object in the image with a labeling box. Ensure that the box does not contain too much
background information. Input a label and press Enter. See Figure 2-11.

yunbao-dataset = <Back to Data Labeling Preview Previous(P) 61 | > | Next(N) Labeling Progress: 0%(0/61) @ Labeling Description

/

File Labels

\ ola[d]

B+ @00y O

a

Figure 2-11 Image labeling for object detection

Step 3 Delete or modify a label in one image.
In area 1, click the Labeled tab and click the target image to enter its labeling page.
Then, you can delete or modify a label through either of the following methods:

Method 1: Move the cursor to the labeling box, right-click, and choose Delete from the
shortcut menu to delete the label, or choose Modify, enter a new label name, and press
Enter.

yunbao-dataset <Back to Data Labeling Preview Previous(P) 161 | > | NextN) Labeling Progress 0%(0/61) @ Labeling Description

Noano

B B+@0OI PO

Figure 2-12 Deleting/Modifying a label in one image

Method 2: Click the 4 or 1°) button on the right of the image to modify or delete its
label.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 32

yunbao-dataset <Back to Data Labeling Preview Previous(P) /61 | > | Next(N) Labeling Progress 0%(0/61) @ Labeling

NoaQnO

B B+0a00y O

&

Figure 2-13 Deleting a label and adding a new label in one image

(SN

Step 4 Delete or modify a label in multiple images.

On the Labeled tab page, click 4 on the right of the target label to rename it, or click

o} to delete it from multiple images. In the dialog box that is displayed, select Delete
label or Delete label and images that only contain this label. See Figure 2-14.

All61 Unlabeled 56 Labeled 5 To Be Confirmed 0

All Labels 1

Figure 2-14 Deleting/Modifying a label in multiple images
Step 5 Publish a dataset.

After data labeling is complete, click Back to Dataset Overview on the labeling page.

HUAWEI HCIP-AI-El Developer V2.0 ModelArts Lab Guide Page 33

o Datase Dashboard F5 Usage Guides

dataset-yunbao [<&

All61 Unlabeled 29 Labeled 32 To Be Confirmed 0
Filter Criteria No flter criteria selected. Show llebetiy
Label Count 1=
[»
@t B2 Synchronize Data Source 2 Crete Team Labeling Task Auto Grouping ~ | | ExportTo 1 select Cument Page -
ard examples

© The ntal daa prciction et s
Incorect. You ae advised to batch select
rd examples for data ity and
augmentation toreslve deep-level model

problems

Data source:inference data

@ Data collcton refers o the process of
obtaining actusl inference data feer 3
‘model is successfully deployed. For details,
see the Data Colecion page.

Diagnosis:

W Hard exampl
Non-hard ex

Figure 2-15 Labeled

& Usoge Guides Creste Team Labeling Task mport Wodiy

dataset-yunbao | < Back to Dataset List:

Dashboard Versions Data Features Labeling Progress
Labeling Ty Object decection ooz Apr 14, 2020 222402 GMT+0800
input Dataset Jncip-ei-modelartsyunbac-image/ taset Jhcip-el-modelarts/yunbao-out/
path
Labeling Progress Label Statistics Annotators' Progress
61 29 0 I Lobels [Labeled Samples
AL Unlabeled Labeled
Al [Unlobeled [l Labeled
The dataset is not a team-labeling dataset, so no annotators' progress statistics are
Hard Example Set collected

I Hord Examples: 0

Non-Hard Examples: 61

Figure 2-16 Publish a dataset
Click OK to publish.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 34

Publish New Version

V003 FrrE:

¢ Version Name

O ziusEsiIEthard ¥biZEEthard-coefficient
< Format) Default M S Amanifestsz{th, HEERRTLUE
difficult, hard-coefficient, hard-reasonsEE5
MNIREAxmls, #E0 sample.xml,
sample.manifest

Splitting @

Description

Enable Hard example

“ CanEEI

Figure 2-17 Publish

Step 6 Manage the dataset.

After creating a dataset, you can manage it on ModelArts.

i - = . a w® |
v dataset b Obect detection 100% (61/61) . Sep 13,2020 10:57:25 GMTs0800 - 2 Deploy Model Publish "

o 0% (©/50) . Aug 21,2020 16:59:23 GMT=0800 - 2 Publish

v Object detection e 100% (500/500) May 20, 2020 133906 GMT+0800 - 2 Deploy Model v Publis "

v dataset-yunbao Object detection — 520 (32/61) Apr 14, 2020 222402 GMT+0800 - 2 Publish More

v dataset-flower Image classification e 100% (50/50) Apr 14, 2020 22:15:02 GMT+0800 - 2 Deploy Model Publish "

Figure 2-18 Datasets page
Area 1: dataset list. All operations performed on datasets are displayed in this area. For
example:
-- Release: Click Release to release the new dataset.
-- Online: Deploy the dataset as an online task.
-- Delete: Move the cursor to the dataset and click Delete.
Area 2: Query information in the dataset list of the current year.

Area 3: Creating a datasetManage versioning.

Step 7 Version management

For details, see section 2.3.1.6.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 35

2.3.3 Uploading an MNIST Dataset to OBS

Prepare an MNIST dataset, and store it in the modelarts-datasets-and-source-
code/data-management/uploading-a-mnist-dataset-to-obs directory. Then, upload the
prepared dataset to OBS. This experiment describes how to use OBS Browser to upload
data to OBS in batches.

Step 1 Obtain the AK/SK. For details, see section 1.3 "Experiment Environment Overview."

Step 2 Download OBS Browser at https://storage.huaweicloud.com/obs/?region=cn-
north-1#/obs/buckets. Select a proper version based on your operating system.
See Figure 2-19.

Help Center =Object Storage Service > Tools Guide > obsbrowser > Introduction to OBS Browser >OBS Browser Overview

OBS Browser Overview View PDF

OBS Browser is a client that runs on Windows and Mac OSs. It can help you effortlessly manage object storage on your personal
computers.

Download OBS Browser. For details, see Downloading OBS Browser.

Table 1 provides personal computer (PC) specifications required by OBS Browser.

Table 1 PC specifications required by OBS Browser

Figure 2-19 Downloading OBS Browser

Decompress the downloaded package and double-click obs.exe to open OBS Browser.

@ OBS Browser+ - >

AK Login Authorization Code Login

Account Name ()

whetxdhr
service @

HUAWEI CLOUD OBS (default) A
Access Key ID

GMJKAWYONUK3D536BXRI

Secret Access Key

Access Path (@)

OBS Browser+

OBS Browser+ is a new GUI-based desktop
application for comprehensive bucket and object
management. With support for batch operations and

custom configurations, OBS Browser+ is suitable for
a wide range of service scenarios. It provides stable Obtain Access Keys Login Help | More +

performance and high efficiency, a good helper for
your cloud migrations. |

Remember my access keys. @

© The network proxy is enabled. Please check whether the current network X
environment requires a proxy. Configure proxy

Figure 2-20 Login accounts

Step 3 Upload files in the MNIST dataset from the modelarts-datasets-and-source-
code/data-management/uploading-a-mnist-dataset-to-obs directory to OBS in
batches. Wait until the transmission icon in the upper right corner indicates that

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 36

the uploading is finished. The uploaded dataset can be used in the handwritten
digit recognition experiments in sections 4.4.1 and 4.4.3 "Using Native MXNet for
Handwritten Digit Recognition."

@ OBS Browser+

Y¢ Favorites (8} Settings (D) About (3 OnlineHelp 2 whetxdhr

CRiECEE S 20E €« 2> 4 Bucket List / hcip2-modelarts / data-manage / uploading-a-mnist-d... / dataset ﬁ
Parallel File

System Q CN North-Beijing4 | Total objects: 8718 | Used storage space: 3.69 GB

St T, Upload ‘ | [53 Create Folder ‘ L Download [T Copy More ~ ‘ Enter an object name prefix. Q ‘ C ‘ ‘ = ‘ ESI

Auto Upload [| Name I= Storage Class = Size = Last Modified = Operation

| B t10k-images-idx3-u} Upload x
Management

Task
,,,,,,,,,,,,,,,,,,,,,,, [J M t10k-labels-idx1-uby

Object Permission Public Read Public Read and Write

\7\ Btrain—images—idx}u\
] BB train-labels-idx1-ubl Storage Class Standard Infrequent Access Archive

\:\ . train-images-idx3-ul

Upload File Folder 0/500 Objects (files or folders)

[] W tiok-labels-idx1-uby

] W t10k-images-idx3-ul Name Local Path Size Operation

] /i
] W train-labels-idx1-uby No data available.

Cancel

Figure 2-21 File upload

2.3.4 Uploading of flower classification data set

This dataset will be used for experiments 4.4.2 and 4.4.4 in Chapter 4.

The path of the data set is "ModelArts Experimental Data Set and source code/data
management/Flower classification data set upload/data set", under which there are
multiple folders with a large number of pictures in each folder.OBS data upload method
refer to section 2.3.3.The OBS interface after uploading is as follows:

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Figure 2-22 File upload

Page 37

[«
A A AR A A A A A A A A A A A A A A A A A A

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 38

Built-in Algorithms for Deep Learning

3.1 About This Lab

ModelArts provides a series of built-in models covering image classification and object
detection, such as the classic ResNet model and lightweight MobileNet model. Built-in
algorithms can greatly shorten the training time on a new dataset and achieve higher
precision. Training with built-in algorithms is a common method of deep learning.

3.2 Objectives

This lab describes how to use built-in algorithms to train datasets. The process is free of
coding, and you only need to prepare datasets that meet specified requirements.

3.3 Procedure

3.3.1 Flower Recognition Application

This section describes how to use a built-in model on ModelArts to build a flower image
classification application. The procedure consists of four parts:

1. Preparing data: On the Data Management page of ModelArts, label the images and
create a flowers dataset.

2. Training a model: Load a built-in model to train the flowers dataset to generate a new
model.

3. Managing a model: Import the new model to manage it.
4. Deploying a model: Deploy the model as a real-time service, batch service, or edge
service.

11 NOTE

If you use ModelArts for the first time, add an access key before using it. For details, see
section 1.3 "Experiment Environment Overview."

3.3.1.1 Preparing Data

The flower images have been labeled and a dataset version has been created in section
2.3.1 "Data Labeling for Flower Recognition." This experiment uses the labeled flowers
dataset.

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

3.3.1.2 Training a Model

On the Training Jobs page of ModelArts, you can create training jobs, manage job

parameters, and perform operations related to visualization jobs.

Page 39

The Training Jobs page lists all training jobs you created. See Figure 3-1. You can create
training jobs, filter the training jobs by status, or search for a training job by entering the

job name in the search box.

The following uses the ResNet_v1_50 built-in model as an example to describe how to
create a training job and generate a new model.

Training Jobs
Create

Name [=

trainjob-ip-face-tra...

trainjob-zdy-flower...

trainjob-flower-mx..

trainjob-mnist-tf-z...

trainjob-zdy-mnist...

trainjob-flower-mo...

Built-in Algorithms

Status =

Successful

Successful

© Canceled

Successful

Successful

Successful

Versions |=

1

1

2

Job Parameters

Duratio...

00:08:25

00:20:09

00:06:38

00:01:02

00:04:19

08:07:37

Figure 3-1 Training Jobs page

Step 2 Create a training job.

Visualization Jobs

Display Only My Instances () @
Created |=

Sep 13, 2020 17:46:23 GMT+0..
Sep 13, 2020 17:25:25 GMT+0..
Sep 13, 2020 17:21:22 GMT+0..
Sep 13, 2020 17:03:47 GMT+0..

Sep 13, 2020 16:52:11 GMT+0..

Sep 13, 2020 16:34:54 GMT+0...

All statuses

Description

-2

NN NN

N

v

Created By

whctxdhr

whctxdhr

whctxdhr

whctxdhr

whctxdhr

whctxdhr

Q| C

Operation

Delete

Delete

Delete

Delete

Delete

Delete

On the ModelArts management console, choose Training Management > Training Jobs,

and click Create. The Create Training Job page is displayed.

Step 3 Set required parameters.

On the Create Training Job page, set required parameters. Then, click Next. After

confirming that the configurations are correct, click Submit.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 40
Version
Algorithm Source Algorithm Management m Frequently-used Custom & MoXing Documentation
Built-in Algorithms ResNet_v1_50 v View Details
Data Source Data path
Dataset dataset-ip-flower.. ¥ Version V002 A
Training Output Path @ /hcip2-modelarts/output/build-in/flower/v0002/ Select

Running Parameter (%) —

train_url /hcip2-modelarts/output/build-in/flower/V

data_url - /hcip2-modelarts/output/data-manage/ip-
split_spec - train:0.8,eval:0.2

num_gpus = 1

batch_size = 32

eval_batch size = 32

learning_rate_strategy = 0.002

- 1

evaluate_every_n_epochs
- 2000000

save_interval_secs

max_epoches - 100

Figure 3-2 Parameter settings

Parameters:

Billing Mode: Pay-per-use by default.

Name: name of a training job. The value can be modified as required.

Version: version of a training job. The version number is automatically generated.
Description: brief description of a training job.

Data Source: data required for training. The options are as follows:

Dataset: Select a dataset and its version.

Data path: Select the training data from an OBS bucket.

Algorithm Source: The options are as follows:

Built-in: Select a built-in ModelArts algorithm.

Frequently-used: Select an Al engine and its version, the code directory, and the boot
file.

Training Output Path: This parameter is mandatory. Select the training result storage
location to store the output model file. (You need to create an empty OBS folder. In this
example, the output path is /modelarts-demo/builtin-algorithm/output.)

Job Log Path: Select a path for storing log files generated during job running.

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 41

Resource Pool: You must select a resource pool (including CPU and GPU resource pools)
for the training job. GPU training is fast while CPU training is slow. GPU/P100 is
recommended.

Compute Nodes: Specify the number of compute nodes. (One node is used for
standalone training, while multiple nodes are used for distributed training. Multi-node
distributed training can accelerate the training process.)

Step 4 View the training job.

In the training job list, click the job name to switch to the training job details page. Figure
3-3 shows the Version Manager tab page. On the Traceback Diagrams tab page, you
can view the traceback diagrams of data, training, models, and web services.

Version Manage!

¥ Select Version ® View Comparison Result

A Sep 13,2020 14:59:10 Version V0001 Status Successful Duration: 00:0024 C | Modify MZre v

Configurations Logs Resource Usages

trainjob-ip-flower | job62da94c9 ResNet_v1_50

Successful TensorFlow | TF-1.8.0-python2.7

V0001 dataset-ip-flower | V002

Sep 13, 2020 15:01:04 GMT+08:00 split_spec=train:0.8 eval0.2 ; num_gpus=1 ; batch_size=32 ; eval.
00:00:24 heip2-modelarts/output/build-in/flower,

CPU: 8 VCPUs | 64 GiB GPU: 1 x nvidia-v100 32 GiB

1

Figure 3-3 Training job details page

Area 1: Displays the details of the current job.
Area 2: Create visual jobs and other operations.

Area 3: Some operations on the current version.

Step 5 Create a visualization job.

After a training job is created, you can go to its details page to view its log. The log
records the current number and the total number of training steps, which can be used as
a reference for the training progress. However, if the precision is not significantly
improved in a training phase, the training job automatically stops. See Figure 3-4. The log
shows that the job will stop after 125 training steps. The current log record shows that 10
training steps have been performed (a training log record is printed every 10 steps by
default). If the precision does not increase, the training stops before the number of steps
reaches 125.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 42

INFO:tensorflow:Running will end at step: 125

INFO:tensorflow:Saving checkpoints for 1 into s3://wolfros-net/jnn/log/temp/model.ckpt.
INFO:tensorflow:step: 0(global step: 0) sample/sec: 1.759 reg_loss: 0.128 total_loss: 2410 ent_loss: 2.282
/home/work/anaconda2/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with
no predicted samples.
‘precision’, 'predicted’, average, warn_for)
INFO:tensorflow:[Plateau Metric] step: 1 accuracy: 0.400
INFO:tensorflow:[Plateau Metric] step: 3 accuracy: 0.500
INFO:tensorflow:[Plateau Metric] step: 5 accuracy: 0.700
INFO:tensorflow:[Plateau Metric] step: 7 accuracy: 0.900

INFO:tensorflow:[Plateau Metric] step: 9 accuracy: 1.000
INFO:tensorflow:step: 10[global step: 10) | sample/sec: 281.292 reg_loss: 0.128 total_loss: 0.270 ent_loss: 0.143

INFO:tensorflow:[Plateau Metric] step: 11 accuracy: 1.000
Figure 3-4 Training job log

After the training job is completed (its Status column on the training job page displays
Successful), or it has been written to the event file, choose Training Jobs > Version
Manager, click Create Visualization Job in the upper right corner, and enter basic
information. See Figure 3-5. You can enter any name. The log path is automatically set to
the model storage path, that is, the Training Output Path parameter in the training job.
Click Next. After confirming that the configurations are correct, click Submit. You can
return to the Visualization Jobs page and click the job name to view its details. You need
to manually stop the visualization job after using it to avoid additional charges.

Create Visualization Job < Back to Visualization Jobs

oCDnﬂgurE 7)) Confirm 3) Finish F7 Usage Guides
Name tensor-a837
Training Output Path (2) /heip2-modelarts/output/build-in/flower; Select
Bling M
Auto Stop (@) ()

‘ @ 1f this option is enabled, the visualization job instance automatically stops when its running duration exceeds the specified duration.

Auto Stop Time ~ (®) 1 hour later 2 hours later 4 hours later 6 hours later Custom

Description

Figure 3-5 Creating a visualization job

3.3.1.3 Managing a Model

Step 1 Create a model.

Click the training job name to go to its details page. On the Version Manager tab page,
click Create Model in the upper right corner, enter the model name and version, and
click Next. The Models page is displayed. When the model status becomes Normal, the
model is successfully created.

Alternatively, click Import in the upper left corner of the Models page. The Import page
is displayed. Set required parameters and click Next to import a model. See Figure 3-6.

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Import | < sack to Modets
Name model-db36
Version 001

Label (@)

Description

Meta Model Source Container image

Create now
Training Job () v

Deployment Type Real-time services Batch services

Figure 3-6 Importing a model

Parameters:
Name: name of the model.
Version: version of the model to be created.

Description: brief description of the model.

Meta Model Source: You can import a meta model from a training job or OBS.
Training job: Select a meta model from a ModelArts training job.

Page 43

[7 Usage Guides

OBS: Import a meta model from OBS and select the meta model storage path and Al
engine. The meta model imported from OBS must meet the model package

specifications.

The following describes the Model Management pages:

‘ My Models Al Market Subscriptions Edge Subscriptions 2 ‘

Import [Search Model All types v Q
Model Name Latest Version Depl t Type Versions Created J= Description Operation

v model-ip-zdy-flower-tf 001 Real-Time Services/Batch Services/Edge Services 1 Sep 14,2020 11:26:22 GMT+08:00 - 2 Delet !

Vv model-ip-zdy-face 002 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 18:17:03 GMT+08:00 -- 2 Delet:

Vv model-ip-zdy-basic-flower-mxnet 0.0.1 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 17:51:48 GMT+0800 - 2 ion | Delet

V' model-mxnet-mnist 00.1 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 17:13:15 GMT+0800 2 Create Version | Delets

Vv model-zdy-basic-mnist-tf 00.1 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 16:24:47 GMT+08:00 2 rsion | Delets

v model-ip-yunbao-bi 00.1 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 15:23:30 GMT+08:00 - 2 Delet

v model-ip-flower-b 00.1 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 15:04:48 GMT+0800 - 2 Delet

\ model-image-allprocess 00.1 Real-Time Services/Batch Services/Edge Services 1 Aug 19,2020 16:19:05 GMT+08:00 - 2 Create Version | Delets

v model-e3fc 00.1 Real-Time Services/Batch Services/Edge Services 1 Aug 11,2020 19:56:32 GMT+08:00 - 2 Create Version | Delets

v model-eded 001 Real-Time Services/Batch Services/Edge Services 1 Aug 05, 2020 18:56:04 GMT+08:00 -~ 2 Delet

Figure 3-7 Model management pages

Area 1:

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 44
Model list, which lists the models created by users, and the following actions can be
taken:

Delete: After selecting the model, click "" on the right side of the model to delete the
currently selected model.

Create a new version: Adjust parameters to generate a new version of the model.

Area 2:

Listed all the current model model information, different access channels, management
model.Import and view the relevant models.

3.3.1.4 Deploying a Model

After a training job is completed and a model is generated (the model status is Normal
after being imported), you can deploy the model on the Service Deployment page. You
can also deploy a model imported from OBS.

Step 1 Click Deploy in the upper left corner of the Real-Time Services page. On the
displayed page, set required parameters. See Figure 3-8. Then, click Next. After
confirming that the parameter settings are correct, click Submit to deploy the
real-time service.

+ Name service-4b7b

Auto Stop @

@ I this function is enabled, the real-time service automatically stop at the specified time, and the service charging

© 1 hour later 2 hours later 4 hours later 6 hours later Custom

Description

* Resource Pool Public resource pools Dedicated resource pools

+ Model and Configuration
Models flowers-resnet1-5 - 001 ~ Traffic Ratio (%) @

Instance Flavor CPU: 2 vCPUs | 8 GiB e Instance Count @ 1 +

Environment Variable @ Add Environment Varial

Price ¥0.80/mour @ m
Figure 3-8 Real-time service

Parameters:

Name: name of the real-time service.

Description: brief description of the real-time service.
Billing Mode: Pay-per-use

Models: Select a model and a version.

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 45

Traffic Ratio: Set the traffic proportion of the node. If you deploy only one version of a
model, set this parameter to 100%. If you select multiple versions for gray release,
ensure that the sum of the traffic ratios of multiple versions is 100%.

Instance Flavor: Values include 2 vCPUs | 8 GiB and 2 vCPUs | 8 GiB GPU: 1 x P4 and so
on.

Instance Count: Select 1 or 2.

Environment Variable: Set environment variables.

Step 2 Click the service name to go to its details page. When its status becomes Running,
you can debug the code or add an image to test the service. For details about the
test operations, see Step 2 in section 1.4.2.4 "Deploying a Service and Performing
Prediction." The test image is stored in modelarts-datasets-and-source-code/data-
management/built-in-deep-learning-algorithms/flower-recognition-
application/test-data. You need to manually stop the real-time service after using
it to avoid additional charges.

3.3.2 Yunbao Detection Application

This section describes how to use a built-in model on ModelArts to build a Yunbao
detection application. The procedure consists of four parts:

1. Preparing data: On the Data Management page of ModelArts, label the images and
create a Yunbao dataset.

2. Training a model: Load a built-in model to train the Yunbao dataset to generate a new
model.

3. Deploying a model: Deploy the obtained model as a real-time prediction service.
4. Initiating a prediction request: Initiate a prediction request and obtain the prediction
result.

(11 NOTE

If you use ModelArts for the first time, add an access key before using it. For details, see
section 1.3 "Experiment Environment Overview."

3.3.2.1 Preparing Data

The data has been prepared in section 2.3.2 "Data Labeling for Yunbao Detection."

3.3.2.2 Training a Model

On the Training Jobs page of ModelArts, you can create training jobs, manage job
parameters, and perform operations related to visualization jobs.

The Training Jobs page lists all training jobs you created. See Figure 3-1. You can create
training jobs, filter the training jobs by status, or search for a training job by entering the
job name in the search box.

The following uses the Faster RCNN_ResNet_v1_50 built-in model as an example to
describe how to create a training job and generate a new model.

Step 1 Create a training job.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 46

On the ModelArts management console, choose Training Management > Training Jobs,
and click Create. The Create Training Job page is displayed.

Step 2 Set required parameters.
On the Create Training Job page, set required parameters. See Figure 3-2. Then, click
Next. After confirming that the configurations are correct, click Submit.
Parameters:
Billing Mode: Pay-per-use by default
Name: name of a training job. The value can be modified as required.
Version: version of a training job. The version number is automatically generated.
Description: brief description of a training job.
Data Source: data required for training. The options are as follows:
Dataset: Select a dataset and its version.
Data path: Select the training data from an OBS bucket.
Algorithm Source: The options are as follows:
Built-in: Select a built-in ModelArts algorithm.

Frequently-used: Select an Al engine and its version, the code directory, and the boot
file.

Training Output Path: Select a path for storing the training result and save the model
file. The path must be empty to ensure normal model training. See Figure 3-9.

% Training Output Path (3) | elart_datasets/datamanage/yunbao/yunbac-out/ Select

Figure 3-9 Training output

Job Log Path: Select a path for storing log files generated during job running. This
parameter is optional. See Figure 3-10.

Job Log Path | /public-whe/YM-Files/ ‘ Select Clear

Figure 3-10 Job log path

Resource Pool: Select a resource pool for the training job. In this example, select the GPU
resources. See Figure 3-11.

* Resource Pool Public resource poaols

* Specifications | CPU: 8 vCPUs | 64 GIiB GPU: 1 x nvidia-p100.. ~

CPU: 8 vCPUs | 64 GiB GPU: 1 x nvidia-p100 16 ..

* Compute Nodes
CPU: 32 vCPUs | 256 GiB GPU: 4 x nvidia-p100 ...

Figure 3-11 Resource pool

Compute Nodes: Specify the number of compute nodes. Set the value to 1 here.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 47

] NOTE

The training takes about 10 minutes if five epochs are running. If the precision is
insufficient, increase the number of epochs.

Step 3 View the training job.

In the training job list, click the job name to enter the training job details page.See Step 3
of 3.3.1.2 for details

Step 4 Create a visualization job.
See Step 4 of 3.3.1.2 for details.
Step 5 Create a model.
See Section 3.3.1.3 for details
Step 6 Deploy a real-time service.

When the model status becomes Normal, click Real-Time Services under Deploy
to deploy the model as a real-time service. See Figure 3-12.

A model-ip-yunbao-bi 001 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 15:23:30 GMT+08:00 -2 Create Version | Delete

Q
Version Status Deployment Type Model Size Model Source Created (= Description Operation
001 Normal Real-Time Services/Batch Services/Edge S.. 44454 MB Built-in Sep 13, 2020 15:23:30 GMT-0, -2 Deploy v Publish v Delete

Real-Time Services

Batch Services

Vv model-ip-flower-bi 0.0.1 Real-Time Services/Batch Services/Edge Services 1 Sep 13,2020 15:04:48 GMT+08:00 - 2 le Version = Delete

Edge Services

__model-image-allorocess 0.0.1 Real-Time Services/Batch Services/Edae Services 1 Aua 19.2020 16:19:05 GMT+08:00 -- 2 Create Version _Delete

Figure 3-12 Service deployment

Area 1 displays the version number of the created model, and area 2 displays the
specifications of the selected inference and prediction node. By default, a single CPU
node is selected.

* Name service-c8ed

Auto Stop @

@ If this function is enabled, the realHime service will automatically stop at the specified time, and the service charging will also stop

© 1 hour later 2 hours later 4 hours later 6 hours later Custom

Description

Resource Pool Public resource pools Dedicated resource pools

* Model and Configuration
Models | auto-deploy-48c51573825579970 - | 001 ~ Traffic Ratio (%) @1
Instance Flavor CPU-2vCPUs | 8 GiB - Instance Count (@ 1 +
A e Ve 2
Environment Variable (3 Add Environment Variable &

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 48

Figure 3-13 Deployment procedure

After the real-time service is deployed and runs properly, you can perform prediction.
After the experiment, you need to manually stop it to stop the billing.

Step 7 Verify the service online.

Choose Service Deployment > Real-Time Services, and click the deployed real-time
service to enter its page.

Deploy Delete Al statuses ~ | | Enteraname Q C
Name 3 Status Failed Calls/Total C. Source Subscriptions Published 3 Description

© Running (54 minutes until stop) & 0/0 My Deployment 0 Jan 07,2020 16:29:09 G,

7. @ Stop on My Deployment Jan 07,2020 11:34:26 G.

7. © stop 072 My Deployment

Jan 07,2020 09:19:51 G.

z

¢

Jan07,20201037596. -2

7. @ Stop on My Deployment s
¢

Nov 15,201921:5150 6.

57382. @ Stop 0/0 My Deployment

Figure 3-14 Entering the service

Click the Prediction tab, and click Upload to upload an image for predictive analysis. The
path of the test image is in the modelarts-datasets-and-source-code/data-
management/built-in-deep-learning-algorithms/yunbao-detection-application/test-data.

Usage Guides Prediction Configuration Updates Monitoring Events Logs Sharing Traceback Diagrams

Request Path | / ~ | ImageFile | Upload Predict

Test Image Preview Test Result

Figure 3-15 Uploading an image
The following lists the test result:

"detection_classes": [
“yunbao”,
“yunbao”,
“yunbao” ,

“yunbao”
T,
“"detection_boxes": [
r
35.209903717041016,
166. 5637969970703,
243.44064331054688,
321.864 56298828125

318.7615051260531,
64.30683898925781
526.1221313476562,
292.81866455078125

yunb2o(36%) 5 =

Figure 3-16 Test result

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 49

Custom Basic Algorithms for Deep
Learning

4.1 About This Lab

This section describes how to use custom algorithms to train and deploy models for real-
time prediction on the ModelArts platform. Custom algorithms include algorithms
developed based on native TensorFlow and MXNet APIs and algorithms developed based
on the self-developed MoXing framework. MoXing can effectively lower the threshold for
using deep learning engines, such as TensorFlow and MXNet, and improve performance
of distributed training.

4.2 Objectives

Upon completion of this task, you will be able to:

¢ Modify native code to adapt to model training, deployment, and prediction on
ModelArts.

e Set up a MoXing framework and use MoXing distributed training capabilities to
accelerate training.

4.3 Using MoXing

MoXing is a network model development APl provided by HUAWEI CLOUD ModelArts.
Compared with native APIs such as TensorFlow and MXNet, MoXing APIs make model
code compilation easier and can automatically obtain high-performance distributed
execution capabilities.

The MoXing module includes the following modules, as shown in Figure 4-1.
e Common module framework (import moxing as mox)

® TensorFlow module (import moxing.tensorflow as mox)

e MXNet module (import moxing.mxnet as mox)

® PyTorch module (import moxing.pytorch as mox)

(When you import engine-related modules, common modules will also be imported.)

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 50
MoXing
MoXing-TensorFlow MoXing-MXNet MoXing-PyTorch
‘ Auto HyperParams ‘ ‘ Auto Model | ‘ Auto HyperParams ‘ L 7777777777777777777 IH %;ilirf;{\gn}iati{d::::::::::!
‘ Dataset | | Model ‘ ‘ Optimizer ‘ | Executor | ‘ Dataset ‘ |5ymbo\s | ‘ Optimizer ‘ ‘ Executor ‘ | AutoDataloader || AutoModule | ‘ Executor |
‘ Distributed Manager | ‘ Custom Ops | ‘ Module ‘ i_ 7777777777777777777 r*j :f_IE@%E%E%::::::::::E

MoXing-Framework

‘ OBS Tools ‘ ‘ DLI Tools ‘ ‘ Collective Communication Tools

Figure 4-1 MoXing module

4.3.2 MoXing - Framework Module

You can use the mox.file module in MoXing to call APIs to directly access OBS. All
environments in ModelArts have been configured.

Example:

import moxing as mox
file_list = mox.file.list_directory('s3://modelarts-demo/codes')

In addition to direct access to OBS, you can use the cache directory /cache as the transit
of OBS in a GPU-enabled job environment, eliminating the need to reconstruct some
code for file access.

Example:

import moxing as mox

Download data from OBS to the local cache.
mox.file.copy_parallel('s3://my_bucket/imput_data', '/cache/input_data')

Directly use the dataset in the local cache /cache/input_data to start training jobs and save the
training output to the local cache /cache/output_log.

train(data_url="/cache/input_data', train_url='/cache/output_log')

Upload the local cache to OBS.

mox.file.copy_parallel('/cache/output_log', 's3://my_bucket/output_log")

API reference:

e

HUAWEI

Python
glob.glob
os.listdir
os.makedirs
03.mkdir
o0s.path.exists
0s.path.getsize

os.path.isdir

0s.remove
0s.rename
05 stat
05 walk
open
shutil.copyfile
shutil.copytree

shutil.rmtree

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

moXx.file
mox file list_directory(__., recursive=True)
mox file list_directory(_... recursive=False)
mox file.make_dirs
mox.file.mk_dir
maox.file.exists
mox.file.get_size

mox.file.is_directory

Figure 4-2 APIs (a)

mox.file.removel..., recursive=False)
mox. file.rename
mox file stat
mox file walk
maox file File
mox file.copy
mox.file.copy_parallel

mox file.remove(..., recursive=Trug)

Figure 4-3 APIs (b)

4.3.3 MoXing-TensorFlow Module

MoXing-TensorFlow is encapsulated and optimized based on TensorFlow, as shown in
Figure 4-4. With the MoXing-TensorFlow programming framework, you only need to pay
attention to the implementation of datasets and models. After the standalone training
script is implemented, it is automatically extended to distributed training.

tf.gfile
tf.gfile. Glob
tf.gfile.ListDirectory
tf.gfile.MakeDirs
tf.gfile. MkDir
t.gfile. Exists

X

{f gfile.IsDirectory

tf.gfile. Remove
tf.gfile. Rename
tf.gfile. Stat
tf.gfile. Walk
tf.gfile FastGFile(if gfile.Gfile)
tf.gfile Copy
X

tf.gfile. DeleteRecursively

MoXing-TensorFlow

‘ Auto HyperParams ‘ ‘ Auto Model ‘
‘ Dataset | ‘ Maodel ‘ ‘Optimizer‘ ‘ Executor ‘
‘ Distributed Manager ‘ ‘ Custom Ops ‘

Dataset: Classification (multilabel), object_detection...

Model: resnet, vgg, inception, mobilenet...

Figure 4-4 MoXing-TensorFlow optimization

Page 51

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 52

Optimizer: batch_gradients, dynamic_momentum, LARS...

MoXing-TensorFlow programming framework:

import tensorflow as tf

import moxing as mox

Define the data input. Receive parameter mode, whose possible values are mox.ModeKeys.TRAIN,
#mox.ModeKeys.EVAL, and mox.ModeKeys.PREDICT. If several tf.Tensor variables are returned,
indicating the input datasets.

def input_fn(mode):

return input_0,input_1,...
Receive the return value of input_fn as the input. model_fn is used to implement the model and

return a ModelSpec instance.
def model_fn(inputs, mode):

input_O, input_1, ... = inputs

logits, _ = mox.get_model_fn(name="resnet_v1_50',
run_mode=run_mode,
o)

loss = ...

return mox.ModelSpec(loss=loss, log_info={'loss": loss}, ...)

Define an optimization operator. Parameters are not accepted. An optimizer is returned.
def optimizer_fn():
opt=..
return opt
mox.run defines the entire running process.
mox.run(input_fn=input_fn,
model_fn=model_fn,
optimizer_fn=optimizer_fn,
run_mode=mox.Modekeys.TRAIN,
)

(11 NOTE

mox.ModelSpec: return value of model_fn defined by the user and used to describe a
user-defined model.

loss: loss value of the user model. The training objective is to decrease the loss value.

log_info: monitoring metrics (only scalars) that need to be printed on the console and
the visualization job interface during training

export_spec: an instance of mox.ExportSpec, which is used to specify the model to be
exported.

hooks: hooks registered with tf.Session
mox.ExportSpec: class of the model to be exported
inputs_dict: model input node

outputs_dict: model output node

version: model version

Description of the mox.run parameter:

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 53

input_fn: user-defined input_fn
model_fn: user-defined model_fn
optimizer_fn: user-defined optimizer_fn

run_mode: running mode, mox.ModeKey.TRAIN, mox.ModeKey.EVAL, ... Only in TRAIN
mode, the loss gradient descent is performed and parameters are updated.

log_dir: destination address of the visualization job log file, checkpoint file, and the
exported PB model file

max_number_of_steps: maximum number of running steps

checkpoint_path: preloaded checkpoint path, which is frequently used in finetuning
log_every_n_steps: console print frequency

save_summary_steps: visualization job log saving frequency

save_model_secs: checkpoint model saving frequency

export_model: type of the exported model. Generally, the value is
mox.ExportKeys.TF_SERVING.

4.4 Procedure

4.4.1 Using Native TensorFlow for Handwritten Digit Recognition

This section describes how to use custom scripts to train and deploy models for
prediction on ModelArts. This section uses TensorFlow as an example to describe how to
recognize handwritten digits. The procedure consists of five parts:

Preparing data: Import the MNIST dataset.
Compiling scripts: Use the TensorFlow framework to compile model training scripts.

Training a model: Use the compiled script to train the MNIST dataset to obtain a well-
trained model.

Managing a model: Import the model for deployment.

Deploying a model: Deploy the model as a real-time service, batch service, or edge
service.

4.4.1.1 Preparing Data

You need to prepare data.

4.4.1.2 Compiling Scripts

Scripts include training script train_mnist_tf.py, inference script customize_service.py,
and configuration file config.json. The inference script and the configuration file are used
during model inference, that is, model deployment. Model inference must comply with
the following specifications:

Structure of the TensorFlow-based model package
OBS bucket/directory name

F— ocr

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 54

| I— model (Mandatory) Name of a fixed subdirectory, which is used to store model-
related files

| | F— <<Custom Python package>> (Optional) User's Python package, which can be
directly referenced in the model inference code

| | |—— saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram
description of the model

| | |—— variables Name of a fixed sub-directory, which contains the weight and
deviation rate of the model. It is mandatory for the main file of the *.pb model.

| | | I—variables.index
| | | — variables.data-00000-0f-00001

| | |—— config.json (Mandatory) Model configuration file. The file name is fixed to
config.json. Only one model configuration file exists.

| | |—— customize_service.py (Optional) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The .py file on which
customize_service.py depends can be directly put in the model directory.

Step 1 Interpret code.

Training code overview: Training code uses the native TensorFlow code to train the
MNIST dataset, that is, to process a task that classifies images to 10 categories. Each
image contains 28 x 28 pixels. The network structure is a simple linear model.
Initialization of all parameters is zero and training starts from scratch.

The following is training code. The source code is stored in the following path: modelarts-
datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-TensorFlow-
for-handwritten-digit-recognition/code/train_mnist_tf.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

Maximum number of model training steps

tf.flags.DEFINE_integer(‘max_steps', 1000, 'number of training iterations.")

Model export version

tf.flags.DEFINE_integer(‘model_version', 1, 'version number of the model.")

data_url indicates the data storage path of the data source on the GUIL. It is a path of s3://.
tf.flags.DEFINE_string('data_url', '/home/jnn/nfs/mnist', 'dataset directory.")

File output path, that is, the training output path displayed on the GUIL. It is also a path of s3://.
tf.flags.DEFINE_string('train_url', '/home/jnn/temp/delete’, 'saved model directory.")

FLAGS = tf.flags.FLAGS

def main(*args):
Train the model.
print('Training model...")
Read the MNIST dataset.

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Page 55

mnist = input_data.read_data_sets(FLAGS.data_url, one_hot=True)
sess = tf.InteractiveSession()

Create input parameters.

serialized_tf_example = tf.placeholder(tf.string, name="tf_example')
feature_configs = {'x": tf.FixedLenFeature(shape=[784], dtype=tf.float32),}
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity (tf_example['x'], name="x")

y_ = tf.placeholder('float’', shape=[None, 10])

Create training parameters.

w = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

Initialize parameters.

sess.run(tf.global_variables_initializer())

Use only the simple linear network layer and define the network output layer softmax.

y = tf.nn.softmax(tf.matmul(x, w) + b, name='y")
Define the loss function.

cross_entropy = -tf.reduce_sum(y_ * tf.log(y))

Add summary information.
tf.summary.scalar('cross_entropy', cross_entropy)

Define the optimizer.
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
Obtain the accuracy.
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
tf.summary.scalar('accuracy', accuracy)
Summarize summary information.
merged = tf.summary.merge_all()
Write data to the summary file every second.
test_writer = tf.summary.FileWriter(FLAGS.train_url, flush_secs=1)
Start training.
for step in range(FLAGS.max_steps):

batch = mnist.train.next_batch(50)

train_step.run(feed_dict={x: batch[0], y_: batch[1]})
Print the verification precision rate every 10 steps.

if step % 10 == 0:
summary, acc = sess.run([merged, accuracy], feed_dict={x: mnist.test.images, y_:

mnist.test.labels})

test_writer.add_summary(summary, step)
print('training accuracy is:', acc)
print('‘Done training!")
Save the model to the model directory of the given train_url.

builder = tf.saved_model.builder.SavedModelBuilder(os.path.join(FLAGS.train_url, 'model'))

Save parameter information of the model.
tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

Define the signature (providing input, output, and method information) as the input parameter

for saving the model.

prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'images": tensor_info_x},
outputs={'scores": tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
Import the graph information and variables.

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 56

The first parameter is transferred to the current session, including the graph structure and all
variables.
The second parameter is a label for the meta graph to be saved. The label name can be
customized. Here, the system-defined parameter is used.
The third parameter is used to save the signature.
main_op performs the Op or Ops group operation when loading a graph. When main_op is
specified, it will run after the Op is loaded and recovered.
Run the initialization operation.
If strip_default_attrs is True, the default value attribute is deleted from the definition node.
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict_images":
prediction_signature,
I
main_op=tf.tables_initializer(),
strip_default_attrs=True)
Save the model.
builder.save()

print('Done exporting!")

if _name__ =='_main_"
tf.app.run(main=main)

Inference code overview: Inference code inherits the TfServingBaseService class of the
inference service and provides the preprocess and postprocess methods. The preprocess
method is used to preprocesse the inputted images. The preprocessed images are
transferred to the network model for final output. The model output result is transferred
to the postprocess function for postprocessing. The postprocessed result is the final
output result on the GUI.

The following is inference code. The source code is stored in the following path:
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-
TensorFlow-for-handwritten-digit-recognition/code/customize_service_mnist.py

from PIL import Image

import numpy as np

import tensorflow as tf

from model_service.tfserving_model_service import TfServingBaseService

class mnist_service(TfServingBaseService):
Read images and data information, preprocess the images, and resize each image to 1,784. Save
image information to
preprocessed_data and return preprocessed_data.
def _preprocess(self, data):
preprocessed_data = {}

for k, v in data.items():
for file_name, file_content in v.items():
image1 = Image.open(file_content)
image1 = np.array(image1, dtype=np.float32)
image1.resize((1, 784))
preprocessed_data[k] = image1

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 57

return preprocessed_data
Postprocess the logits value returned by the model. The prediction result is the class label
corresponding to the maximum logits value, that is,
the prediction label of the image. The format is {'predict label": label_name}.
def _postprocess(self, data):

outputs = {}

logits = data['scores'] [0]

label = logits.index(max(logits))

outputs['predict label'] = label
return outputs

The following is the configuration file. The source code is stored in the following path:
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-
TensorFlow-for-handwritten-digit-recognition/code/config.json

The config.json file contains four mandatory fields: model_type, metrics,
model_algorithm, and apis.

Model_type: Al engine of the model, indicating the computing framework used by the
model.

Metrics: model precision
Model_algorithm: model algorithm, indicating the usage of the model.
Apis: API arrays provided by the model for external systems.

Dependencies (optional): dependency packages of inference code and the model.
The reference is as follows:

"model_type":"TensorFlow",
Model precision information, including the F1 score, accuracy, precision, and recall. The
information is not mandatory for training MNIST.
"metrics":{
"f1":0.61185,
"accuracy":0.8361458991671805,
"precision":0.4775016224869111,
"recall":0.8513980485387226
b
Dependency packages required for inference
"dependencies":[
{
"installer":"pip",
"packages":[
{
"restraint":"ATLEAST",
"package_version":"1.15.0",
"package_name":"numpy"

}l

{
"restraint":"",
"package_version":"",
"package_name":"h5py"

}l

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

"restraint":"ATLEAST",
"package_version":"1.8.0",
"package_name":"tensorflow"

8

{
"restraint":"ATLEAST",
"package_version":"5.2.0",
"package_name":"Pillow"

}

}
Il
Type of the model algorithm. In this example, the image classification model is used.

"model_algorithm":"image_classification",

"apis":[
{
"procotol":"{HiR #EHERES | XK. ",
"url":"/",
"request":{
"Content-type":"multipart/form-data",
"data"{

"type":"object",
"properties":{

"images":{
"type":"file"
}
}
}

}

"method":"post",

"response":{
"Content-type":"multipart/form-data",
"data"{

"required":[
"predicted_label",
"scores"

1

"type":"object",
"properties":{
"predicted_label":{

"type":"string"
B
"scores":{
"items":{
"minltems":2,
"items":[
{
"type":"string"
)2
{
"type":"number"
}
1

"type":"array",
"maxltems":2

Page 58

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 59

}I
"type":"al’l’ay"

}

Step 2 Upload scripts.

Upload the training script to OBS.

For details about how to upload files to OBS, see https://support.huaweicloud.com/en-
us/modelarts_fag/modelarts_05_0013.htmL

In this example, the upload path is /modelarts-demo/codes/.
(11 NOTE

The file path cannot contain Chinese characters.

4.4.1.3 Training a Model

Step 1 Create a training job.
For details about the model training process, see section 3.3.1.2 "Training a Model."
Parameter settings are as follows:

Data Source: Select the MNIST dataset or select the OBS path where the dataset is
located.

Algorithm Source: Select Frequently-used framework.

Al Engine: Select TensorFlow and TF-1.13.1-python2.7.

Code Directory: Select the parent path /modelarts-demo/codes/ of code.
Boot File: Select the boot script train_mnist_tf.py.

Resource Pool: This parameter is mandatory. Select a resource pool (including CPU and
GPU) for the training job. GPU training is fast, and CPU training is slow. GPU/P100 is
recommended.

Compute Nodes: Retain the default value 1. (One node is used for standalone training,
and more than one node is used for distributed training. Multi-node distributed training
can accelerate the training process.)

Figure 4-5 shows the parameter settings. After setting the parameters, click Next. After
confirming the parameter settings, click Create Now. The job is submitted.

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

% Version

% Algorithm Source Algorithm Management Built-in Frequently-used Custom

Frequently-used Al engines used to ¢ training jobs.
* Al Engine TensorFlow v || TF-1.131-python2.7 -
* Code Directory @ /hcip-ei-modelarts/modelarts-demo/codes/mnist-tf/ Select
* Boot File @ /hcip-si-modelarts/modelarts-demo/codes/mnist-tf/trair Select
* Data Source Dataset
* Data Path /hcip-ei-modelarts/modelarts-demoy/dataset/mnist-datac Select | @ W
* Training Output Path @ [hcip-ei-modelarts/output/mnist-tf/V0005/ Select

commend you select an empty ry as the output path

Running Parameter @

train_url = /hcip-ei-modelarts/output/mnist-tf/V0005/
data_url = | Jhcip-ei-modelarts/modelarts-demo/datast
Job Log Path () Select Clear
By default, logs are stored in the s nd will be deleted irregularly. S a path for storing logs.

* Resource Pool Public resource pools

* Specifications GPU: 1 x nvidia-v100 CPU: 8 vCPUs | 64 GiB 32 GiB v

* Compute Nodes 1

Notification (2)

price ¥28.00/hour @

& MoXing Documentation

Figure 4-5 Parameter settings of the training job

Step 2 Create a visualization job.

Page 60

For details, see Create a visualization job. in section 3.3.1.2 "Training a Model." The

following figure shows the visualization job page.

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 61
TensorBoard SCALARS
[[] Show data download links Q, Filter tags (regular expressions supported)
Ignore outliers in chart scaling
accuracy
Tooltip sorting method: default v
accuracy

Smoothing 0.930

0.910

_— 0.6

0.890

0.870
Horizontal Axis 0.850

0.830

STEP RELATIVE WALL
0.810
0.000 2000 400.0 600.0 800.0 1.000k

Runs nNEE
Write a regex to filter runs
O cross_entropy

cross_entropy
6.508+3
5.508+3
4.50s+3

3.50e+3

2.50e+3

0.000 200.0 400.0 600.0 800.0 1.000k

=

Figure 4-6 Visualization job page
Step 3 Upload scripts.

After the training job is complete, rename customize_service_mnist.py to
customize_service.py, and upload the customize_service.py and config.json files to the
model directory in the training output path (OBS path specified during training job
creation) for model deployment.

4.4.1.4 Managing Models

For details, see section 3.3.1.3 "Managing a Model."

4.4.1.5 Deploying a Model

For details, see section 3.3.1.4 "Deploying a Model." The standard image format for
image prediction is a gray handwritten digit image (28 x 28 pixels). If images do not
meet format requirements, the prediction result may be inaccurate. Figure 4-7 shows the

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 62

test result of the image in the following path: modelarts-datasets-and-source-
code/custom-basic-algorithms-for-deeplearning/native-TensorFlow-for-handwritten-
digit-recognition/code/test-data/2.PNG

Figure 4-7 Image prediction

4.4.2 Using MoXing-TensorFlow for Flower Recognition

This section describes how to use MoXing custom scripts to perform distributed model
training, deployment, and prediction on ModelArts. This section uses MoXing as an
example to describe how to training flowers data. The procedure consists of five parts:

Preparing data: Create and Label the flowers dataset.
Compiling scripts: Use the MoXing framework to compile model training scripts.

Training a model: Use the compiled script to train the flowers dataset to obtain a well-
trained model.

Managing a model: Import the model for deployment.
Deploying a model: Deploy a model as a real-time service.

4.4.2.1 Preparing Data
The data has been prepared in section 2.3.1 "Data Labeling for Flower Recognition".
4.4.2.2 Compiling Scripts

Scripts include training script flowers_mox.py, inference script
customize_service_flowers.py, and configuration file config.json. The inference script
and the configuration file will be used during model deployment. The configuration file is
automatically generated during training. You need to upload the inference script.

Step 1 Interpret code.

Training code overview: Training code uses MoXing to train the flowers dataset. Both
distributed training and standalone training are supported. The dataset has 50 images of
five types. The resnet_v1_50 model is used to classify the images into five types.

The following is training code. The source code is stored in the following path: modelarts-
datasets-and-source-code/custom-basic-algorithms-for-deep learning/MoXing-
TensorFlow-for-flower-recognition/code/flowers_mox.py

Training code is as follows:

coding:utf-8
from __future__ import absolute_import

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 63

from __future__ import division
from __future__ import print_function
Import the package required for training.
import os
import math
import numpy as np
import h5py
import tensorflow as tf
import moxing.tensorflow as mox
from moxing.tensorflow.optimizer import learning_rate_scheduler
from moxing.tensorflow.builtin_algorithms.metrics import write_config_json
from moxing.framework.common.data_utils.read_image_to_list import get_image_list
from moxing.framework.common.metrics.object_detection_metrics import get_metrics
from moxing.tensorflow.datasets.raw.raw_dataset import ImageClassificationRawFilelistDataset
from moxing.tensorflow.datasets.raw.raw_dataset import ImageClassificationRawFilelistMetadata
from moxing.tensorflow.builtin_algorithms.multilabels_metrics import process_with_class_metric
from moxing.tensorflow.builtin_algorithms.multilabels_metrics import post_process_fn_with_metric
Define a dataset path.
tf.flags.DEFINE_string('data_url', default=None, help='dataset directory')
Define the batch size of images to be trained, that is, the number of images trained in each step.
tf.flags.DEFINE_integer('batch_size', default=32, help='batch size per device per worker')
Define the number of GPUs used for training. The default value is 1.
tf.flags.DEFINE_integer(‘'num_gpus', default=1, help="number of gpus for training')
Define a running mode. The default value is the training mode.
tf.flags.DEFINE_string('run_mode', default=mox.ModeKeys.TRAIN, help='Optional. run_mode. Default
to TRAIN')
Define a model save path.
tf.flags.DEFINE_string('train_url', default=None, help="train dir")
Define a training model name. The default value is resnet_v1_50.
tf.flags.DEFINE_string('model_name', default="resnet_v1_50', help="model_name")
Define an image size during model training. The value of resnet_v1_50 is 224.
tf.flags.DEFINE_integer(‘image_size', default=None, help='Optional. Resnet_v1 use 224".")
Define the optimizer used for model training.
tf.flags.DEFINE_string('optimizer', default='sgd’, help='"adam or momentum or sgd, if None, sgd will
be used.')
Define momentum.
tf.flags.DEFINE_float('momentum’, default=0.9, help='Set 1 to use 'SGD" opt, <1 to use momentum
opt')
Define a dataset split ratio. The default ratio of splitting a dataset into a training set and a
validation set is 0.8:0.2.
tf.flags.DEFINE_string('split_spec', default="train:0.8,eval:0.2',
help='dataset split ratio. Format: train:0.8,eval:0.2")
Define a learning rate. By default, the learning rate is 0.01 for the first 800 epochs, and is 0.001 for
800 to 1000 epochs.
tf.flags.DEFINE_string('learning_rate_strategy', default="800:0.01,1000:0.001',
help="Necessary. Learning rate decay strategy. Fotmat: 10:0.001,20:0.0001"
' which means from epoch 0~10 use learning rate = 0.01 and from epoch
10~20")
flags = tf.flags.FLAGS

def main(*args):
Container cache path, which is used to store models
cache_train_dir = '/cache/train_url'
If the path does not exist, create a path.
if not mox.file.exists(cache_train_dir):

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 64

mox.file.make_dirs(cache_train_dir)
Obtain the number of training nodes.
num_workers = len(mox.get_flag('worker_hosts').split(',"))
Obtain the number of GPUs.
num_gpus = mox.get_flag(‘num_gpus')
Set the parameter update mode to parameter_server.
mox.set_flag('variable_update', 'parameter_server')
Obtain meta information about the model.
model_meta = mox.get._model_meta(flags.model_name)
Obtain a list of datasets.
data_list, _, _ = get_image_list(data_path=flags.data_url, split_spec=1)
Define an image size during training.
image_size = [flags.image_size, flags.image_size] if flags.image_size is not None else None
Define a data enhancement method.
mode: training or validation. The data enhancement methods vary depending on the mode.
model_name: model name
output_height: output image height. The default value is 224 for resnet_v1_50.
output_width: output image width. The default value is 224 for resnet_v1_50.
def augmentation_fn(mode):
data_augmentation_fn = mox.get_data_augmentation_fn(
name=flags.model_name,
run_mode=mode,
output_height=flags.image_size or model_meta.default_image_size,
output_width=flags.image_size or model_meta.default_image_size)
return data_augmentation_fn

Obtain metadata information about the dataset.

data_list: list of datasets

split_spec: split ratio of the training set and validation set

train_dataset_meta = eval_dataset_meta =
ImageClassificationRawFilelistMetadata(data_list=data_list,
split_spec=flags.split_spec)

Create a training set and a validation set.

metadata: metadata of the stored dataset

batch_size: number of images read each time

image_size: image size during model training. The default value is 224*224 for resnet_v1_50.

augmentation_fn: image enhancement function

num_readers: number of threads for reading data

preprocess_threads: number of threads for data processing

shuffle: whether to shuffle data

drop_remainder: whether to skip the batch when the number of images is insufficient in the last
batch

train_dataset =ImageClassificationRawFilelistDataset(

metadata=train_dataset_meta,

batch_size=flags.batch_size = * mox.get_flag('num_gpus'),

image_size=image_size,
augmentation_fn=augmentation_fn(mox.ModeKeys.TRAIN),

drop_remainder=True)

eval_dataset = ImageClassificationRawfFilelistDataset(
metadata=eval_dataset_meta,
mode=mox.ModeKeys.EVAL,
batch_size=flags.batch_size * mox.get_flag(‘'num_gpus'),
num_readers=1,

shuffle=False,

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 65

image_size=image_size,

preprocess_threads=1,

reader_kwargs={'num_readers": 1, 'shuffle': False},
augmentation_fn=augmentation_fn(mox.ModeKeys.EVAL),

drop_remainder=True)

Read the number of images in the training set and the validation set.

num_train_samples = train_dataset.total_num_samples

num_eval_samples = eval_dataset.total_num_samples

num_classes = train_dataset_meta.num_classes

labels_dict = train_dataset_meta.labels_dict

label_map_dict = train_dataset_meta.label_map_dict

Write the index file. This file is used to save information required for model inference. The
information saved here is a label name list, which is used for storing
the real label category outputted during inference prediction. (The label used in the training is one-
hot encoded information, and the real label is not saved.)

index_file = h5py.File(os.path.join(cache_train_dir, 'index'), 'w')

index_file.create_dataset('labels_list', data=[np.string_(i) for i in
train_dataset_meta.labels_dict.keys()])

index_file.close()

batch_size quantity on each machine.

batch_size_per_device = flags.batch_size or int(round(math.ceil(min(
num_train_samples / 10.0 / num_gpus / num_workers, 16))))

Total batch_size.

total_batch_size = batch_size_per_device * num_gpus * num_workers

Total number of training epochs.

max_epochs = float(flags.learning_rate_strategy.split(’,") [-1].split(":") [0])

Number of training steps.

max_number_of_steps = int(round(math.ceil(

max_epochs * num_train_samples / float(total_batch_size))))
tf.logging.info('Total steps = %s' % max_number_of_steps)

Define a data read function.
def input_fn(run_mode, **kwargs):
if run_mode == mox.ModeKeys.EVAL:
dataset = eval_dataset
elif run_mode == mox.ModeKeys.TRAIN:
dataset = train_dataset
else:
raise ValueError(‘Unsupported run mode. Only "TRAIN" and "EVAL" are supported. ')

image_name, image, label = dataset.get(['image_name', 'image’, 'label'])
return mox.InputSpec(split_to_device=True).new_input(inputs=[image_name, image, label])

Define postprocessing operations for validation, calculate metrics of the validation set, such as
recall, precision, accuracy, and mean_ap, and write them into the metric.json and config.json files.

def multiclass_post_process_fn_with_metric(outputs):
output_metrics_dict = post_process_fn_with_metric(outputs)
post_metrics_dict = process_with_class_metric(labels_dict, output_metrics_dict, label_map_dict)
get_metrics(cache_train_dir, post_metrics_dict)
write_config_json(metrics_dict=post_metrics_dict['total'],
train_url= cache_train_dir,
model_algorithm="'image_classification’,
inference_url= cache_train_dir)

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 66

results = {'accuracy': post_metrics_dict['total']['accuracy']}

return results

Implement the model and return a ModelSpec instance.
def model_fn(inputs, run_mode, *kwargs):
image_names, images, labels = inputs

if run_mode == mox.ModeKeys.EXPORT:
images = tf.placeholder(dtype=images.dtype, shape=[None, None, None, 3],
name='images_ph')
image_size = flags.image_size or model_meta.default_image_size

mox_model_fn = mox.get_model_fn(
name=flags.model_name,
run_mode=run_mode,
num_classes=num_classes,
batch_norm_fused=True,
batch_renorm=False,
image_height=image_size,
image_width=image_size)
Model output value.
logits, end_points = mox_model_fn(images)
Process the label value. The 1/k processing is performed for k-hot label, which is obtained from
the related paper.
labels_one_hot = tf.divide(labels, tf.reduce_sum(labels, 1, keepdims=True))
Calculate a cross-entropy loss.
loss = tf.losses.softmax_cross_entropy(labels_one_hot, logits=logits, label_smoothing=0.0,
weights=1.0)
Calculate a regularization loss.
regularization_losses = mox.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
if len(regularization_losses) > 0:
regularization_loss = tf.add_n(regularization_losses)
loss = loss + regularization_loss
log_info = {'loss'": loss}

inputs_dict = {'images": images}
outputs_dict = {'logits": logits}

export_spec = mox.ExportSpec(inputs_dict=inputs_dict,
outputs_dict=outputs_dict,
version="model')
LogEvaluationMetricHook monitoring information
monitor_info = {"loss'": loss, 'logits": logits, 'labels": labels, 'image_names': image_names}

LogEvaluationMetricHook is used to verify the validation set during training and view the
model training effect.

monitor_info: records and summarizes information.

batch_size: used to calculate epochs based on steps

samples_in_train: number of samples in the training set of each epoch

samples_in_eval: number of samples in the validation set of each epoch

num_gpus: number of GPUs. If the value is None, value 1 will be used by default.

num_workers: number of workers. If the value is None, value 1 will be used by default.

evaluate_every_n_epochs: Perform verification after n epochs are trained.

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 67

mode: Possible values are {auto, min, max}. In min mode, the training ends when the
monitoring metrics stop decreasing. In max mode, the training ends when the monitoring metrics
stop increasing. In auto mode, the system automatically infers the value from the name of the
monitoring metric.

prefix: prefix of the message whose monitor_info is to be printed

log_dir: directory for storing summary of monitor_info

device_aggregation_method: function for aggregating monitor_info between GPUs

steps_aggregation_method: function for aggregating monitor_info among different steps

worker_aggregation_method: function for aggregating monitor_info among different workers

post_process_fn: postprocesses monitor_info information.

hook = mox.LogEvaluationMetricHook (

monitor_info=monitor_info,

batch_size=batch_size_per_device,

samples_in_train=num_train_samples,
samples_in_eval=num_eval_samples,

num_gpus=num_gpus,

num_workers=num_workers,

evaluate_every_n_epochs=10,

prefix='[Validation Metric]',

log_dir=cache_train_dir,
device_aggregation_method=mox.HooksAggregationKeys.USE_GPUS_ALL,
steps_aggregation_method=mox.HooksAggregationKeys.USE_STEPS_ALL,
worker_aggregation_method=mox.HooksAggregationKeys.USE_WORKERS_ALL,
post_process_fn=multiclass_post_process_fn_with_metric)

model_spec = mox.ModelSpec(loss=loss,
log_info=log_info,
output_info=outputs_dict,
export_spec=export_spec,
hooks=hook)
return model_spec
Define an optimization function.
def optimizer_fn():
global_batch_size = total_batch_size * num_workers
Ir = learning_rate_scheduler.piecewise_lr(flags.learning_rate_strategy,
num_samples=num_train_samples,
global_batch_size=global_batch_size)
SGD optimization function
if flags.optimizer is None or flags.optimizer == 'sgd":
opt = mox.get_optimizer_fn('sgd', learning_rate=Llr) ()
Momentum optimization function
elif flags.optimizer == 'momentum®:
opt = mox.get_optimizer_fn('momentum’, learning_rate=Ilr, momentum=flags.momentum) ()
Adam optimization function
elif flags.optimizer == 'adam":
opt = mox.get_optimizer_fn(‘adam’, learning_rate=lr) ()
else:
raise ValueError('Unsupported optimizer name: %s' % flags.optimizer)
return opt

mox.run(input_fn=input_fn,
model_fn=model_fn,
optimizer_fn=optimizer_fn,
run_mode=flags.run_mode,
inter_mode=mox.ModeKeys.EVAL,

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 68

batch_size=flags.batch_size,
log_dir= cache_train_dir,
auto_batch=False,
save_summary_steps=5,
max_number_of_steps= max_number_of_steps,
output_every_n_steps= max_number_of_steps,
export_model=mox.ExportKeys.TF_SERVING)
The accuracy metrics of the validation set are written into the config.json file. After the training is
complete, the file is copied to the model directory for model management.
mox.file.copy_parallel(cache_train_dir, flags.train_url)
mox.file.copy(os.path.join(cache_train_dir, 'config.json’),
os.path.join(flags.train_url, 'model’, 'config.json"))
mox.file.copy(os.path.join(cache_train_dir, 'index'),
os.path.join(flags.train_url, 'model’, 'index'))
if _name__ =='_main_"
tf.app.run(main=main)

Inference code overview: Inference code inherits the TfServingBaseService class of the
inference service and provides the preprocess and postprocess methods. The preprocess
method is used to preprocesse the inputted images. The preprocessed images are
transferred to the network model for final output. The model output result is transferred
to the postprocess function for postprocessing. The postprocessed result is the final
output result on the GUI.

The following is inference code. The source code is stored in the following path:

modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/MoXing-
TensorFlow-for-flower-recognition/code/customize_service_flowers.py

from PIL import Image

import h5py

import numpy as np

import os

from model_service.tfserving_model_service import TfServingBaseService

class cnn_service(TfServingBaseService):
Read images and data information and preprocess the images.
def _preprocess(self, data):
preprocessed_data = {}
for k, v in data.items():
for file_name, file_content in v.items():
image = Image.open(file_content)
image = image.convert('RGB')
image = np.asarray(image, dtype=np.float32)
image = image[np.newaxis, ;, :, :]
preprocessed_data[k] = image
return preprocessed_data

Postprocess the return value of the model and return the prediction result.
def _postprocess(self, data):

h5f = h5py.File(os.path.join(self.model_path, 'index'), 'r")

labels_list = h5f['labels_Llist'][:]

h5f.close()

outputs = {}

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 69

Define the softmax function.
def softmax(x):

X = np.array(x)

orig_shape = x.shape

if len(x.shape) > 1:
Matrix
exp_minmax = lambda x: np.exp(x - np.max(x))
denom = lambda x: 1.0 / np.sum(x)
x = np.apply_along_axis(exp_minmax, 1, x)
denominator = np.apply_along_axis(denom, 1, x)
if len(denominator.shape) == 1:
denominator = denominator.reshape((denominator.shape[0], 1))
X = x * denominator
else:
Vector
X_max = np.max(x)
X = X - X_max
numerator = np.exp(x)
denominator = 1.0 / np.sum(numerator)
X = numerator.dot(denominator)
assert x.shape == orig_shape

return x

Perform softmax processing on the return value of the model.

predictions_list = softmax(data['logits'][0])

predictions_list = ['%.3f' % p for p in predictions_list]

Sort the results.

scores = dict(zip(labels_list, predictions_list))
scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
Return the category labels with top 5 reliability.

if len(labels_list) > 5:

scores = scores[:5]

label_index = predictions_Llist.index(max(predictions_list))

predicted_label = str(labels_list[label_index])

print(‘predicted label is: %s ' % predicted_label)

outputs['predicted_label'] = predicted_label

outputs['scores'] = scores

return outputs

For details about the configuration file, see section 4.4.1.2 "Compiling Scripts." The values
of four precision-related metrics are automatically generated during the training.

Step 2 Upload scripts.

Upload the training script to OBS. In this example, the upload path is /modelarts-
demo/codes/.

(1] NOTE

The file path cannot contain Chinese characters.

For details about how to upload data, see https://support.huaweicloud.com/en-
us/modelarts_fag/modelarts_05_0013.htmlL

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 70

4.4.2.3 Training a Model

Step 1 Create a training job.
For details about the model training process, see section 3.3.1.2 "Training a Model."
Parameter settings are as follows:

Data Source: Select the flower recognition dataset generated in section Data
Management.

Algorithm Source: Select Frequently-used.

Al Engine: Select TensorFlow and TF-1.8.0-python2.7.

Code Directory: Select the parent path /modelarts-demo/codes/ of code.
Boot File: Select the boot script flowers_mox.py.

Resource Pool: Select a resource pool (including CPU and GPU) for the training job. GPU
training is fast, and CPU training is slow. GPU/P100 is recommended.

Training Output Path: /modelarts-demo/output/flowers_mox/

Compute Nodes: Set it to 2. (One node is used for standalone training, and more than
one node is used for distributed training. Multi-node distributed training can accelerate
the training process.)

The following figure shows the parameter settings. After setting the parameters, click
Next. After confirming the parameter settings, click Create Now. The job is submitted.

Version

Algorithm Source Algorithm Management Built-in Custom & MoXing Documentation
Al Engine TensorFlow v || TF-1.8.0-python2.7 -
Code Directory (2) /hcip2-modelarts/zdy-basic/flower-mox/code/ Select
Boot File (2) /hcip2-modelarts/zdy-basic/flower-mox/code/flowers_m« Select
Data Path /hcip-ei-modelarts/modelarts-demo/dataset/flower-mxn Select ® T
Training Output Path (®) /hcip2-modelarts/output/zdy-basic/flower-tf-mox/V0002 Select

Running Parameter (3) — -
train_url - /hcip2-modelarts/output/zdy-basic/flower-

data_url = | /hcip-ei-modelarts/modelarts-demo/datas

®

Job Log Path (D) Select Clear

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 71

Resource Pool Public resource pools

Specifications GPU: 1 x nvidia-v100 CPU: 8 vCPUs | 64 GiB 32 GiB v
Compute Nodes 1
Notification ~ (3)

price ¥28.00/hour @

Figure 4-8 Parameter settings of the training job
Step 2 Create a visualization job.
For details, see Create a visualization job. 4 in section 3.3.1.2 "Training a Model."
Step 3 Upload scripts.

After the training job is complete, rename customize_service_flowers.py to
customize_service.py and upload it to the model directory in the training output path
(OBS path specified during training job creation).

4.4.2.4 Managing Models

For details, see section 3.3.1.3 "Managing a Model."

4.4.2.5 Deploying a Model

For details, see section 3.3.1.4 "Deploying a Model."

4.4.3 Using Native MXNet for Handwritten Digit Recognition

This experiment describes how to use MXNet to implement handwritten digit recognition,
deploy and test a model, and use visualization jobs in the training process.

Step 1 Upload the MNIST dataset to the OBS bucket using the method described in
section 2.3.3. See the following figure.

Name J= Storage Class |= Size = Last Modified = Operation
B t10k-images-idx3-ubyte.gz Standard 1.57 MB Sep 13,2020 16:18:51 GMT... L, o -
B +10k-labels-idx1-ubyte.gz Standard 443 KB Sep 13,2020 16:18:51 GMT.. L o€ -
B train-images-idx3-ubyte.gz Standard 9.45 MB Sep 13,2020 16:18:51 GMT... L, o -
8 train-labels-idx1-ubyte.gz Standard 28.20 KB Sep 13, 2020 16:18:54 GMT... O

| train-images-idx3-ubyte Standard 44.86 MB Sep 13, 2020 16:47:24 GMT... RO

| t10k-labels-idx1-ubyte Standard 9.77 KB Sep 13, 2020 16:47:24 GMT... o & -

i t10k-images-idx3-ubyte Standard 7.47 MB Sep 13,2020 16:47:24 GMT... L o -

i train-labels-idx1-ubyte Standard 58.60 KB Sep 13, 2020 16:47:26 GMT... Lo -

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 72

Figure 4-9 MNIST file

Step 2 Upload the code file train_mnist.py to the OBS bucket. For example, upload
train_mnist.py to the modelarts-demo/builtin-algorithm/mxnet_mxnet folder
in the OBS path, as shown in the following figure. The source code of
train_mnist.py is stored in the following path: modelarts-datasets-and-source-
code/custom-basic-algorithms-for-deep learning/native-MXNet-for-
handwritten-digit-recognition/code/train_mnist.py

T, Upload [create Folder | L,] Q E

Name (= Storage Class = Size = Last Modified = Operation

Standard 572KB Apr 24,2020 142044 GMT.. L & =

Figure 4-10 Uploading code to OBS

The code of the training script train_mnist.py is interpreted as follows:

The script uses the native MXNet framework to train the MNIST dataset, which contains 60,000
white and black images (28 x 28 pixels), with accuracy of about 99% in the training set.

import mxnet as mx

import argparse

import logging

import os

Define input parameters.
parser = argparse.ArgumentParser(description="train mnist",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

Number of classes. In this example, handwritten digits are used, so the value is 10.
parser.add_argument('--num_classes', type=int, default=10,

help="the number of classes')
Number of samples, which is used for lr change. The MNIST training set contains 60,000 images.
parser.add_argument('--num_examples', type=int, default=60000,

help="the number of training examples')

data_url indicates the data storage path of the data source on the GUI. It is a path of s3://.
parser.add_argument('--data_url', type=str, default=None,
help="the training data')

Learning rate, which is the step of parameter update each time
parser.add_argument('--lr', type=float, default=0.05,

help='initial learning rate')
Epochs to be trained. When all datasets enter the model once, it is called an epoch.
parser.add_argument('--num_epochs', type=int, default=10,

help="max num of epochs')
Interval for outputting batch logs.
parser.add_argument('--disp_batches', type=int, default=20,

help='show progress for every n batches')
Parameters of a model are updated each time batch_size of data is processed. This is called a
batch.
parser.add_argument('--batch_size', type=int, default=128,

help="the batch size')
parser.add_argument('--kv_store', type=str, default='device',

help='key-value store type')
File output path, that is, the training output path displayed on the GUIL. It is also a path of s3://.

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 73

parser.add_argument('--train_url', type=str, default=None,

help="the path model saved')
Number of GPUs. The job delivers this parameter based on the machine specifications in the
selected resource pool. If you use your own code, you only need to
add this parameter to define the context.
parser.add_argument('--num_gpus', type=int, default='0’,

help="number of gpus')
Determine whether the generated code must be in a format that can be deployed as an inference
service.
parser.add_argument('--export_model', type=int, default=1, help="1: export model for predict job \

0: not export model')

args, unkown = parser.parse_known_args()

Read data by using the MNISTIter API provided by MXNet. Because the dataset name in the market
is train-images-idx3-ubyte, the path is Data storage location + Training file name.
def get_mnist_iter(args):

train_image = os.path.join(args.data_url, 'train-images-idx3-ubyte')

train_label = os.path.join(args.data_url, 'train-labels-idx1-ubyte')

train = mx.io.MNISTIter(image=train_image,
label=train_label,
data_shape=(1, 28, 28),
batch_size=args.batch_size,
shuffle=True,
seed=10)

return train

Construct a simple fully-connected network with activation functions.
def get_symbol(num_classes=10, **kwargs):
Initialize variables, which must be defined at the beginning of all networks.
data = mx.symbol.Variable('data')
Flatten the input of [m, n] to [1, m*n].
data = mx.sym.Flatten(data=data)
Fully-connected layer. num_hidden indicates the number of neurons.
fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
Activation function layer, which is used to add the non-linearity of the model.
act1 = mx.symbol.Activation(data = fc1, name="relu1’, act_type="relu")
fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
act2 = mx.symbol.Activation(data = fc2, name="relu2', act_type="relu")
The value of num_hidden is 10, because the final output is the probability of 10 digits.
fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes)
Normalize the output of the FC layer to 0 to 1. The total probability of 10 classes is 1.
mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax’)
return mlp

def fit(args):
Indicates whether distributed or standalone program is used.

kv = mx.kvstore.create (args.kv_store)

Define the logging level and format.
head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
logging.info('start with arguments %s', args)
Obtain training data.
train = get_mnist_iter(args)
Define that the current model is stored after each epoch of the MXNet ends.

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 74

checkpoint = mx.callback.do_checkpoint(args.train_url if kv.rank == 0 else "%s-%d" % (

args.train_url, kv.rank))

Define a callback after each batch is complete, including running speed information and the
mxboard file generated in the training output path. They can be used for deploying a visualization
job.

batch_end_callbacks = [mx.contrib.tensorboard.LogMetricsCallback(

args.train_url), mx.callback.Speedometer(args.batch_size,
args.disp_batches)]

Obtain the simple fully-connected network mentioned above.

network = get_symbol(num_classes=args.num_classes)

Define whether to run on the GPU or CPU. The num_gpus parameter is transferred by the
machine specifications when the job is started. You can directly use the parameter.

Define context in this cyclic list mode.

devs = mx.cpu() if args.num_gpus == 0 else [mx.gpu(int(i)) for i in range(args.num_gpus)]

Create a model.

model = mx.mod.Module(context=devs, symbol=network)

Define initialization functions of the model.

initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2)

Create optimizer parameters. In this example, simple initial learningrate and weightdecay are
used.

optimizer_params = {'learning_rate'": args.lr, 'wd' : 0.0001}

Run

model.fit(train,# Train data.

begin_epoch=0,# This parameter is used for checkpoint recovery. If the checkpoint is
loaded, this parameter is used.

num_epoch=args.num_epochs,# Number of epochs for training

eval_data=None,# Validation dataset

eval_metric=["'accuracy'],# Validation metric. In this example, the value is acc.

kvstore=kv,# kvstore is used to control the standalone or distributed system. The
standalone system is used by default.

optimizer='sgd',# Parameter update method. In this example, random gradient
descent is used.

optimizer_params=optimizer_params,# It is used to control the changes of
parameters, for example, Lr.

initializer=initializer,# Model initialization function

arg_params=None,# Model parameter. If the value is not None, the value comes
from the existing model.

aux_params=None,# Auxiliary model parameter. If the value is not None, the value
comes from the existing model.

batch_end_callback=batch_end_callbacks,# Function invoked after each batch ends

epoch_end_callback=checkpoint,# Parameter invoked after each epoch ends

allow_missing=True# Model parameter missing is allowed. If a model parameter is
missing, the initialization function is used.

Perform the following operations if you want to deploy the model as a real-time service on
HUAWEI CLOUD ModelArts.
if args.export_model == 1 and args.train_url is not None and len(args.train_url):
end_epoch = args.num_epochs
save_path = args.train_url if kv.rank == 0 else "%s-%d" % (args.train_url, kv.rank)
params_path = '%s-%04d.params' % (save_path, end_epoch)
json_path = ('%s-symbol.json' % save_path)
logging.info(params_path + 'used to predict')
pred_params_path = os.path.join(args.train_url, 'model’, 'pred_model-0000.params')
pred_json_path = os.path.join(args.train_url, 'model’, 'pred_model-symbol.json’)

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 75

MoXing is a Huawei-developed framework of ModelArts. In this example, the file APl of MoX is
used to access OBS.
import moxing.mxnet as mox
copy indicates the file copy operation, and remove indicates the file deletion operation. For
details, see mox.framework api.
The required file structure is generated in train_url (training output path).

|--train_url

[--model

xxx-0000.params
xxx-symbol.json

mox.file.copy(params_path, pred_params_path)
mox.file.copy(json_path, pred_json_path)
for i in range(1, args.num_epochs + 1, 1):
mox.file.remove ('%s-%04d.params' % (save_path, i))
mox.file.remove (json_path)
if _name__ =="'_main_":
fit(args)

Step 3 On the ModelArts console, choose Training Jobs and click Create.

aaaaaaaaa

Figure 4-11 Creating training jobs

A job name must be unique. If the data source is a dataset imported from the market,
select the corresponding dataset (you can view the dataset on the Datasets tab page of
the Data Management page) or select the data storage location. In this example, the
data is stored in the OBS path modelarts-demo/data. Select this path, as shown in the
following figure.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 76

Algorithm Source Algorithm Management Built-in Frequently-used Custom & MoXing Documentation

Al Engine MXNet v MXNet-1.2.1-python2.7 v
Code Directory (®) /hcip-ei-modelarts/modelarts-demo/codes/mnist-mxnet/ Select
Boot File (2) /hcip-ei-modelarts/modelarts-demo/codes/mnist-mxnet/ Select
Data Source Dataset Data path
Data Path /hcip-ei-modelarts/modelarts-demo/dataset/mnist-datas Select
Training Output Path ® /hcip-ei-modelarts/output/mnist-mxnet/vV0002/ Select

Figure 4-12 Data selection

After selecting data, select mxnet1.2.1-python2.7 in the frequently-used framework.
Select the modelarts-demo/builtin-algorithm/mxnet_mnist/ directory where code is
stored, and select train_mnist.py as the boot file. Select an existing path to store the
model output. Select Public resource pools for Resource Pool and click Next.

max_epoches = | 10 W

Figure 4-13 Parameter settings

If any custom parameters need to be entered in code, you only need to define the

corresponding argparse parsing in code, and enter the parameters in Running
Parameter.

Running Parameter @

train_url = /hcip-ei-modelarts/output/mnist-mxnet/VQi

data_url = /hcip-ei-modelarts/modelarts-demo/datase

max_epoches = u
+)

Figure 4-14 Entering running parameters

Step 4 After the training job is created, go to the corresponding job and wait until job
running is complete. During the process, you can check logs and pay attention to
the result. After the job is complete, you can view the result in Training Output
Path. In this example, the selected OBS path is modelarts-
demo/result_log/mnist_mxnet_log. The following figure shows the result.

T, Upload [57 Create Folder L] Q E
Name = Storage Class = Size (= Last Modified % Operation
il pred_model-0000.params Standard 427.65 KB Apr 24, 2020 14:30:19 GMT... Lo
pred_model-symbol.json Standard 2.06 KB Apr 24, 2020 14:30:19 GMT... Lo
configjson Standard 643 bytes Apr 24, 2020 14:35:47 GMT... Lo
i customize_service.py Standard 5.46 KB Apr 24, 2020 14:35:47 GMT... L g

Az

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 77

Figure 4-15 Training job output result

The events file is generated by the mxboard. The mxboard is a module provided by the

MXNet to observe the accuracy and loss value changes during the training process. This

file is used to deploy the visualization job. You can create a visualization job on the right
of the training job to view the changes of parameters, for example, the precision loss of
the model, as shown in the following figure.

Figure 4-16 Creating a visualization job

[J Show data download links Q, Filter tags (regular expressions supported)

Ignore outliers in chart scaling
accuracy
Tooltip sorting method: default M

accuracy
Smoothing 0.5%0

— @ 0.6 0570

Horizontal Axis 0330

STEP RELATIVE WALL o

.,
Runs ro - I:I
.

Write a regex to filter runs

MOo.

Figure 4-17 Visualization job

The model directory contains the pred_model-0000.params and pred_model-

symbol.json model files. This directory is used to import a model and deploy the model
as a real-time service.

Step 5 Upload the config.json configuration file and customize_service.py inference
code to the model folder in the OBS training output path, as shown in the

following figure. Note that the configuration file name and inference code name
cannot be changed.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 78
/-) =101X

OBS/ OBS Browser @ @whvan. o

i' » obs-modelartwhc » modelart_datas... » deep-learning-b... » mxnet-mnist » output » mode
< f b delartwh delart_dat: d | b t t tput del v
= tyUploa reate Folder aste nter an object name prefix. Q

DUpload [llE Fold [Past Ent bject prefi

Name Storage Class Restoration Status Size Type Last Modified 1} Operation

B configjson Standard - 623 byte File Jan 09,2020 15:25:38 GMT+08:00 (5 =g

B customize_service py Standard - 5610 KB File Jan 09,2020 15:25:38 GMT+08:00 ()«

. pred_model-0000.params Standard - 427654 KB File Jan 00,2020 09:46:57 GMT+08:00 ¢ =5

. pred_model-symbol json Standard - 2.063 KB File Jan 09,2020 09:46:57 GMT+08:00 (7)) =g

Figure 4-18 model structure directory

Interpretation of the config.json configuration file

"model_type":"MXNet",
The fields in metrics are used to measure model accuracy. Their values range from 0 to 1. You can
set the fields to any value within this range.
"metrics": {"f1": 0.39542, "accuracy": 0.987426, "precision": 0.395875, "recall": 0.394966},
Write the following code based on the object detection or image classification type. In this example,
the image classification type is used, and code is as follows:
image_classification
"model_algorithm":"image_classification",
apis_dict['request'] =\
{
"data": {
"type": "object",
"properties": {
"images": {
"type": "file"
}
}
I
"Content-type": "multipart/form-data"
}
apis_dict['response'] = {
"data™: {
"type": "object",
"required™: [
"detection_classes",
"detection_boxes",
"detection_scores"
1
"properties": {
"detection_classes": {
"type": "array",
"item": {
"type": "string"
}
I
"detection_boxes": {
"type": "array",
"items": {

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Page 79

"type": "array",
"minltems": 4,
"maxltems": 4,
"items": {
"type": "number"
}
}
8
"detection_scores": {
"type": "number"
}
}
)2
"Content-type": "multipart/form-data"
}
The following code is for object detection. The value of model_algorithm is
object_detection.
"model_algorithm":"object_detection",
apis_dict['request'] =\
{
"data": {
"type": "object",
"properties": {
"images": {
"type": "file"
}
}
b
"Content-type": "multipart/form-data"
}
apis_dict['response'] = {
"data": {
"type": "object",
"required": [
"detection_classes",
"detection_boxes",
"detection_scores"
1
"properties": {
"detection_classes": {
"type": "array",
"item": {
"type": "string"
}
b
"detection_boxes": {
"type": "array",
"items": {
"type": "array",
"minltems": 4,
"maxitems": 4,
"items": {
"type": "number"
}
}

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 80

b
"detection_scores": {
"type": "number"
}
}
}I

"Content-type": "multipart/form-data"

}

Interpretation of the customize_service.py inference code

The built-in mxnet_model_service component of MXNet is used.
import mxnet as mx

import requests

import zipfile

import json

import shutil

import os

import numpy as np

from mxnet.io import DataBatch

from mms.log import get_logger

from mms.model_service.mxnet_model_service import MXNetBaseService
from mms.utils.mxnet import image, ndarray

logger = get_logger()
Check whether the shape of the inputted image meets the requirements. If the shape does not
meet the requirements, an error is reported.
def check_input_shape(inputs, signature):
"'Check input data shape consistency with signature.

Parameters
inputs : List of NDArray

Input data in NDArray format.
signature : dict

Dictionary containing model signature.
assert isinstance(inputs, list), 'Input data must be a list.'
assert len(inputs) == len(signature['inputs']), 'Input number mismatches with ' \

'signature. %d expected but got %d." \
% (len(signature['inputs']), len(inputs))

for input, sig_input in zip(inputs, signature['inputs']):

assert isinstance(input, mx.nd.NDArray), 'Each input must be NDArray.'

assert len(input.shape) ==

len(sig_input['data_shape']), 'Shape dimension of input %s mismatches with '\
'signature. %d expected but got %d.' \
% (sig_input['data_name'], len(sig_input['data_shape']),
len(input.shape))
for idx in range(len(input.shape)):
if idx != 0 and sig_input['data_shape'][idx] != 0:
assert sig_input['data_shape'][idx] ==\
input.shapelidx], 'Input %s has different shape with '\
'signature. %s expected but got %s." \

S

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 81

% (sig_input['data_name'], sig_input['data_shape'],
input.shape)
Inherit the MXNetBaseService class. The MXNet model needs to inherit this base class when an
inference service is deployed.
class DLSMXNetBaseService(MXNetBaseService):

"'"MXNetBaseService defines the fundamental loading model and inference
operations when serving MXNet model. This is a base class and needs to be
inherited.

def __init__(self, model_name, model_dir, manifest, gpu=None):

print ("-------------------- init classification servive ------------- ")
self. model_name = model_name
self.ctx = mx.gpu(int(gpu)) if gpu is not None else mx.cpu()
self._signature = manifest['Model']['Signature']
data_names = []
data_shapes =[]
for input in self._signature['inputs']:
data_names.append(input['data_name'])
Replace 0 entry in data shape with 1 for binding executor.
Set batch size as 1
data_shape = input['data_shape']
data_shape[0] = 1
for idx in range(len(data_shape)):
if data_shape[idx] == 0:
data_shape[idx] = 1
data_shapes.append(('data’, tuple(data_shape)))

Load the MXNet model to the model directory of train_url. load_epoch of params can be
directly define here.
epoch =0
try:
param_filename = manifest['Model']['Parameters']
epoch = int(param_filename[len(model_name) + 1: -len(".params')])
except Exception as e:
logger.warning('Failed to parse epoch from param file, setting epoch to 0')
load indicates the loaded well-trained model, and sym indicates model information,
including the contained layers. arg and aux are models.
Parameter information, which is stored in params on MXNet.
sym, arg_params, aux_params = mx.model.load_checkpoint('%s/%s' % (model_dir,
manifest['Model']['Symbol'][:-12]), epoch)
Define a module, and place model network information and the contained parameters on
ctx, which can be a CPU or GPU.
self.mx_model = mx.mod.Module(symbol=sym, context=self.ctx,
data_names=['data'], label_names=None)
Bind the compute module to the compute engine.
self.mx_model.bind(for_training=False, data_shapes=data_shapes)
Set the parameter to the parameter of the trained model.
self.mx_model.set_params(arg_params, aux_params, allow_missing=True)
Read images and data. The function is called when its name contains _preprocess.
def _preprocess(self, data):
img_list = []
for idx, img in enumerate(data):
input_shape = self.signature['inputs'][idx]['data_shape'l
We are assuming input shape is NCHW
[h, w] = input_shape[2:]

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 82

if input_shape[1] == 1:
img_arr = image.read(img, 0)
else:
img_arr = image.read(img)
Resize the image to 28 x 28 pixels.
img_arr = image.resize(img_arr, w, h)
Re-arrange the image to the NCHW format.
img_arr = image.transform_shape(img_arr)
img_list.append(img_arr)
return img_list
Summarize the inference results, and return top 5 confidence.
def _postprocess(self, data):
dim = len(data[0].shape)
if dim > 2:
data = mx.nd.array(np.squeeze(data.asnumpy(), axis=tuple(range(dim)[2:])))
sorted_prob = mx.nd.argsort(data[0], is_ascend=False)
Define the output as top 5.
top_prob = map(lambda x: int(x.asscalar()), sorted_prob[0:5])
return [{'probability": float(datal[O, i].asscalar()), 'class": i}
for i in top_prob]
Perform a forward process to obtain the model result output.
def _inference(self, data):
"'Internal inference methods for MXNet. Run forward computation and
return output.

Parameters
data : list of NDArray
Preprocessed inputs in NDArray format.

Returns
list of NDArray
Inference output.
Check the data format.
check_input_shape(data, self.signature)
data = [item.as_in_context(self.ctx) for item in data]
self.mx_model.forward(DataBatch(data))
return self.mx_model.get_outputs()[0]
The ping and signature functions are used to check whether the service is normal. You can
define the functions as follows:
def ping(self):

"'Ping to get system's health.

Returns
String
MXNet version to show system is healthy.

return mx.__version__

@property
def signature(self):
"'Signiture for model service.

e

HUAWEI

HCIP-AI-EI Developer V2.0 ModelArts Lab Guide

Page 83

Returns

Model service signiture.

return self._signature

Step 6 Import a model and deploy it as a real-time prediction service. In the navigation
pane, click Model Management. On the displayed page, click Import. See the
following figure.

My Models

Model Name

[Search Model

v model-ip-zdy-flower-tf

v model-ip-zdy-face

v model-ip-zdy-basic-flower-mxnet

Al Market Subscriptions

Edge Subscriptions

Latest Version Deployment Type Versions

00.1 Real-Time Services/Batch Services/Edge Services 1
002 Real-Time Services/Batch Services/Edge Services 1
0.0.1 Real-Time Services/Batch Services/Edge Services 1

Created |=

Sep 14, 2020 11:26:22 GMT+08:00

Sep 13, 2020 18:17:03 GMT+08:00

Sep 13, 2020 17:51:48 GMT+08:00

Figure 4-19 Importing a model

Al types
Description

2

-2

-2

Operation

Create Version | Delete

Create Version = Delete

Create Version = Delete

Select the path of the specified meta model. When selecting the path, select the upper-
level directory of the model file and click Create Now. See the following figure.

Meta Model Source

Figure 4-20 Selecting a path for importing a model

Training job Template Container image

Meta Model /hcip-ei-modelarts/output/mnist-mxne

Al Engine

s the model package specifications

On the Model Management page, locate the mx_mnist_demo model and choose
Deploy > Real-Time Services.

Billing Mode

* Name

AutoStop @

Description

Resource Pool

* Model and Configuration

service-2ffb

@

’ 0 If this function is enabled, the real-time service will automatically stop at the specified time, and the service charging will also stop.

@® 1 hour later 2 hours later 4 hours later

Dedicated resource pools

Public resource pools

Model Source m Al Market
Model model-mnist-mxnet v
Specifications CPU: 2VCPUs | 8 GiB v

6 hours later

Custom

v Traffic Ratio (%) @)

Compute Nodes ()

S

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 84

Figure 4-21 Deploying a real-time service

On the Deploy page, enter the following parameters:

input_data_shape indicates the shape of the inputted image. The MNIST dataset
contains 28 x 28 pixels images. Therefore, enter 0,1,28,28.

output_data_shape is the model output. MNIST is a sample set of 10 classes. Therefore,
enter 0,10, which indicates a value ranging from 0 to 10.

input_data_name is set to images for tests on the public cloud Ul. If the API structure is
invoked, this parameter can be left blank. See the following figure.

Resource Pool Public resource pools Dedicated resource pools
Model and Configuration
wosesouce [T v

Model model-mnist-mxnet v || 001 v Traffic Ratio (%) (@

Specifications CPU: 2vCPUs | 8 GiB v Compute Nodes @ 1 +

Environment Variable (2) input_data_shape =| 012828 o
output_data_shape = 010 o

input_data_name =| images o

® Add Environment Variable

Figure 4-22 Deploying a real-time service

After the service deployment is complete, upload the image in the following path:
modelarts-datasets-and-source-code/custom-basic-algorithms-for-deep learning/native-
MXNet-for-handwritten-digit-recognition/test-data/6.jpg. The 28 x 28 pixels MNIST
handwritten images with white characters on black background are used for testing. See
the following figure.

Figure 4-23 Test result of the real-time service

(1] NOTE

After the experiment is complete, disable the service in a timely manner to avoid
unnecessary expenses.

e

HUAWEI HCIP-AI-EI Developer V2.0 ModelArts Lab Guide Page 85

	Chapter 7 Image Processing Lab Guide
	About This Document
	Overview
	Description
	Background Knowledge Required
	Experiment Environment Overview

	1 Image Data Preprocessing
	1.1 Introduction
	1.2 Objective
	1.3 Lab Environment Description
	1.4 Procedure
	1.4.1 Basic Operations
	Step 1 Define the matshow function to facilitate picture display.
	Step 2 Image reading and display
	Step 3 Display data types and image sizes
	Step 4 Image storage

	1.4.2 color space conversion
	Step 1 color image graying
	Step 2 Replace the three-channel sequential BGR with the RGB.
	Step 3 BGR and HSV color space conversion

	1.4.3 coordinate Transformation
	Step 1 translation
	Step 2 rotation
	Step 3 Mirroring
	Step 4 Zoom

	1.4.4 grayscale Transformation
	Step 1 Grayscale Transformation. inversion, grayscale stretch, grayscale compression
	Step 2 gamma transformation

	1.4.5 histogram
	Step 1 Histogram display
	Step 2 histogram equalization

	1.4.6 filtering
	Step 1 median filtering
	Step 2 mean filtering
	Step 3 Gaussian filtering
	Step 4 sharpening

	1.5 Experiment Summary

	2 HUAWEI CLOUD EI Image Tag Service
	2.1 Introduction to the Experiment
	2.2 Objective
	2.3 Lab APIs
	2.3.1 REST APIs
	2.3.2 REST API Request/Response Structure
	Table 2-2 Request method description

	2.3.3 Image Tagging API
	Table 2-3 Request parameter description
	Table 2-4 Response parameter description
	Table 2-5 Returned Value parameter description

	2.4 Procedure
	2.4.1 Applying for a Service
	Step 1 Open the HUAWEI CLOUD official website. https://www.huaweicloud.com/en-us/
	Step 2 Log in to the system using a HUAWEI CLOUD account and choose image recognition.
	Step 3 Click Use Now:
	Step 4 Select Beijing 4 and enable the corresponding service. In this experiment, you need to enable Image Tag.

	2.4.2 (Optional) Downloading the image recognition SDK
	Step 1 Downloading the image recognition SDK Software Package and Documents
	Step 2 Decompress the image_sdk folder in the package to the project folder.

	2.4.3 Use AK/SK to perform image tag management. (Skip this step if you alrealy have ak/sk)
	Step 1 Open the HUAWEI CLOUD official website. https://www.huaweicloud.com/en-us/Log in to the console.
	Step 2 Click My Credential under My Account.
	Step 3 Click Access Key to add an access key. After you perform the steps in, the system automatically generates a .csv file. The key is stored in the file. Keep the file secure.

	2.4.4 Opening the Jupyter Notebook
	2.4.5 Downloading a Dataset
	2.4.6 Initialize Image Tag Service
	Step 1 Importing Related Libraries
	Step 2 Set related parameters.
	Step 3 Using network image to test

	2.4.7 Labeling related photos
	Step 1 Mark a photo
	Step 2 Mark all photos in the data folder.
	Step 3 Save the marking result.

	2.4.8 Making Dynamic Album by Using Marking Results
	Step 1 Reopen the saved labeling result.
	Step 2 Use keywords to search (the keyword is Flower).
	Step 3 Display related images.
	Step 4 Creating a GIF Image

	2.4.9 Automatically classify photos with labels
	Step 1 Automatic classification

	2.5 Experiment Summary

	Chapter 8 Speech Processing Lab Guide
	About This Document
	Overview
	Description
	Background Knowledge Required
	Experiment Environment Overview

	1 Speech Preprocessing
	1.1 Introduction
	1.1.1 About this lab
	1.1.2 Objectives
	1.1.3 Knowledge Required

	1.2 Installing Related Modules
	1.3 Procedure
	Step 1 Import related modules
	Step 2 View basic attributes of the wav file
	Step 3 View the waveform sequence of the wav file
	Step 4 Obtain file name
	Step 5 Count the number of speech files in each subfolder
	Step 6 View the first file in each sub-folder
	Step 7 Create a spectrum processing function
	Step 8 Visualize one spectrum of multiple samples
	Step 9 Visualize multiple spectrums of one sample
	Step 10 Visualize the waveforms of multiple samples
	Step 11 Visualize multiple waveforms of one sample

	1.4 Summary

	2 HUAWEI CLOUD EI Text-to-Speech Service
	2.1 Introduction
	2.1.1 About this lab
	2.1.2 Objectives

	2.2 Preparing the Experiment Environment
	2.3 Obtaining and configuring Python SDK
	2.4 Procedure
	2.4.1 TTS
	Step 1 Import related modules
	Step 2 Configure related parameters
	Step 3 Configure data and save path
	Step 4 Initialize the client
	Step 5 Construct request
	Step 6 TTS test

	2.5 Summary

	3 Speech Recognition Based on Seq2Seq
	3.1 Introduction
	3.1.1 About this lab
	3.1.2 Objectives
	3.1.3 Knowledge Required

	3.2 Procedure
	Step 1 Import related modules
	Step 2 Configure data path
	Step 3 Read data and perform feature extraction
	Step 4 Configure neural network parameters
	Step 5 Create Seq2Seq model
	Step 6 Configure training data
	Step 7 Model training
	Step 8 Model testing

	3.3 Summary

	Chapter 9 Nature Language Processing Lab Guide
	About This Document
	Overview
	Description
	Background Knowledge Required
	Experiment Environment Overview

	1 HUAWEI CLOUD EI Natural Language Processing Service
	1.1 Introduction
	1.2 Objective
	1.3 Procedure
	1.3.1 Preparing the Experiment Environment
	1.3.1.1 Obtain the project code
	Step 1 Register and log in to the console.
	Step 2 Click the username and select “My Credentials” from the drop-down list.
	Step 3 On the My Credential page, view the project ID in the projects list.
	1.3.1.2 Download and Use the SDK
	Step 1 Go to the created notebook environment with the 8-core 32 GB modelArts TensorFlow2.1.0 configuration.
	Step 2 Go to the notebook page, create a folder, and rename the folder “huawei_cloud_ei”.
	Step 3 Click the newly created huawei_cloud_ei folder.
	Step 4 Create a notebook file and select the conda-python3 environment.
	Step 5 Download the Python SDK
	Step 6 Decompressing the SDK

	1.3.2 NLP Basic Service
	Step 1 Importing SDKs
	Step 2 Token authentication
	Step 3 Initializing the Client
	Step 4 Named Entity Recognition (Basic Edition)

	1.3.3 Natural Language Generation Service
	Step 1 Initializing the Client
	Step 2 Text Summary (Basic)

	1.4 Experiment Summary

	2 Text Classification
	2.1 Introduction
	2.2 Objective
	2.3 Procedure
	2.3.1 Environment Preparation
	Step 1 Go to the notebook page, create a folder, and rename the folder text_classification.
	Step 2 Click the created text_classification folder.
	Step 3 Create a notebook file and select the TensorFlow-2.1.0 environment.
	Step 4 Downloading Data
	Step 5 Decompressing Data

	2.3.2 Naive Bayesian text classification
	Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment.
	Step 2 Importing Related Library
	Step 3 Data preprocessing
	Step 4 Define the main class of the classifier and define the training and test functions.
	Step 5 Initialize and train the classifier.
	Step 6 Single sentence test

	2.3.3 SVM Text Classification
	Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment.
	Step 2 Importing Related Modules
	Step 3 Data preprocessing
	Step 4 Define the main class of the classifier, define training, and test functions.
	Step 5 Train the SVM classifier without the chi-square test.
	Step 6 Train SVM classifiers and use chi-square test.
	Step 7 chi-square feature analysis
	Step 8 Single sentence test

	2.3.4 TextCNN Text Classification
	Step 1 Create a notebook file and select the TensorFlow-2.1.0 environment.
	Step 2 Importing Related Library
	Step 3 Data preprocessing
	Step 4 Defines the TextCNN main class, including model building, training, and test functions.
	Step 5 Initialize the model and train the model.
	Step 6 Test Set Evaluation
	Step 7 Single sentence test

	2.4 Experiment Summary

	3 Machine Translation
	3.1 Introduction
	3.2 Objective
	3.3 Procedure
	Step 1 Go to the notebook home page, create a folder, and rename the folder machine_translation.
	Step 2 Click the created machine_translation folder.
	Step 3 Create a notebook file and select the TensorFlow-2.1.0 environment.
	Step 4 Downloading Data
	Step 5 Decompressing Data
	Step 6 Importing Related Library
	Step 7 Specifying the data path
	Step 8 Defining a Preprocessing Function
	Step 9 Load dataset
	Step 10 Convert the file to tf.data.Dataset.
	Step 11 Defining an Encoder
	Step 12 Defining the Attention Layer
	Step 13 Defining a Decoder
	Step 14 Define optimizers and losses
	Step 15 Setting the checkpoint storage path
	Step 16 Train model
	Step 17 Defining test and visualization functions
	Step 18 Loading a model offline
	Step 19 Single sentence translation test

	3.4 Experiment Summary

	Chapter 10 ModelArts Lab Guide
	About This Document
	Overview
	Description
	Background Knowledge Required
	Experiment Environment Overview
	Experiment Data Overview

	1 ExeML
	1.1 About This Lab
	1.2 Objectives
	1.3 Experiment Environment Overview
	1.4 Procedure
	1.4.1 Flower Recognition Application
	1.4.2 Creating a Project
	Step 1 Create a project.
	Step 2 Confirm the project creation.
	1.4.2.2 Labeling Data
	Step 1 Upload images.
	Step 2 Label the images.
	Step 3 Delete or modify a label in one image.
	Step 4 Delete or modify a label in multiple images.
	1.4.2.3 Training a Model
	Step 1 Set related parameters.
	Step 2 Train a model.
	1.4.2.4 Deploying a Service and Performing Prediction
	Step 1 Deploy the model as a service.
	Step 2 Test the service.

	1.4.3 Yunbao Detection Application
	1.4.3.1 Creating a Project
	Step 1 Create a project.
	Step 2 Confirm the project creation.
	1.4.3.2 Labeling Data
	Step 1 Upload images.
	Step 2 Label the images.
	Step 3 Delete or modify a label in one image.
	Step 4 Delete or modify a label in multiple images.
	1.4.3.3 Training a Model
	Step 1 Set the parameters.
	Step 2 Train a model.
	1.4.3.4 Deploying a Service and Performing Prediction
	Step 1 Deploying the model as a service
	Step 2 Test the service.

	1.4.4 Bank Deposit Prediction Application
	1.4.4.1 Preparing Data
	Step 1 Find the train.csv file (training dataset) in the modelarts-datasets-and-source-code/data-management/bank-deposit-prediction-application/dataset directory.
	Step 2 Browse and understand the training dataset.
	Table 1-1 Parameters and meanings
	Table 1-2 Sample data of the dataset

	Step 3 Upload the training dataset file from your local computer to the OBS bucket. For details about how to upload a file to OBS, see https://support.huaweicloud.com/qs-obs/obs_qs_0001.html.
	1.4.4.2 Training a Model
	Step 1 Enter the ModelArts management console, and choose ExeML > Predictive Analytics > Create Project to create a predictive analytics project. When creating the project, select the training dataset uploaded to OBS in previous steps.
	Step 2 Click the project name to enter its Label Data page, preview the data and select the training objective (specified by Label Column). The training objective here is to determine whether the customer will apply for a deposit (that is, attr_7). Th...
	Step 3 Wait until the training is completed and view the training result. You can check the training effect of the model based on the evaluation result.
	1.4.4.3 Deploying a Service and Performing Prediction
	Step 1 On the Train Model tab page, click Deploy in the upper left corner.
	Step 2 On the Deploy Service page, test the prediction service.
	Step 3 Use the following code for prediction. You only need to modify the parameters under the req_data module.

	2 Data Management
	2.1 About This Lab
	2.2 Objectives
	2.3 Procedure
	2.3.1 Data Labeling for Flower Recognition
	2.3.1.1 Creating dataset
	Step 1 Learn the layout of the Datasets page.
	Step 2 Create a dataset.
	2.3.1.2 Labeling Images
	2.3.1.3 Deleting or Modifying a Label in One Image
	2.3.1.4 Deleting or Modifying a Label in Multiple Images
	2.3.1.5 Publish a Dataset
	2.3.1.6 Managing Versioning

	2.3.2 Data Labeling for Yunbao Detection
	Step 1 Create a dataset.
	Step 2 Label the data.
	Step 3 Delete or modify a label in one image.
	Step 4 Delete or modify a label in multiple images.
	Step 5 Publish a dataset.
	Step 6 Manage the dataset.
	Step 7 Version management

	2.3.3 Uploading an MNIST Dataset to OBS
	Step 1 Obtain the AK/SK. For details, see section 1.3 "Experiment Environment Overview."
	Step 2 Download OBS Browser at https://storage.huaweicloud.com/obs/?region=cn-north-1#/obs/buckets. Select a proper version based on your operating system. See Figure 2-19.
	Step 3 Upload files in the MNIST dataset from the modelarts-datasets-and-source-code/data-management/uploading-a-mnist-dataset-to-obs directory to OBS in batches. Wait until the transmission icon in the upper right corner indicates that the uploading ...

	2.3.4 Uploading of flower classification data set

	3 Built-in Algorithms for Deep Learning
	3.1 About This Lab
	3.2 Objectives
	3.3 Procedure
	3.3.1 Flower Recognition Application
	3.3.1.1 Preparing Data
	3.3.1.2 Training a Model
	Step 2 Create a training job.
	Step 3 Set required parameters.
	Step 4 View the training job.
	Step 5 Create a visualization job.
	3.3.1.3 Managing a Model
	Step 1 Create a model.
	3.3.1.4 Deploying a Model
	Step 1 Click Deploy in the upper left corner of the Real-Time Services page. On the displayed page, set required parameters. See Figure 3-8. Then, click Next. After confirming that the parameter settings are correct, click Submit to deploy the real-ti...
	Step 2 Click the service name to go to its details page. When its status becomes Running, you can debug the code or add an image to test the service. For details about the test operations, see Step 2 in section 1.4.2.4 "Deploying a Service and Perform...

	3.3.2 Yunbao Detection Application
	3.3.2.1 Preparing Data
	3.3.2.2 Training a Model
	Step 1 Create a training job.
	Step 2 Set required parameters.
	Step 3 View the training job.
	Step 4 Create a visualization job.
	Step 5 Create a model.
	Step 6 Deploy a real-time service.
	Step 7 Verify the service online.

	4 Custom Basic Algorithms for Deep Learning
	4.1 About This Lab
	4.2 Objectives
	4.3 Using MoXing
	4.3.2 MoXing – Framework Module
	4.3.3 MoXing-TensorFlow Module

	4.4 Procedure
	4.4.1 Using Native TensorFlow for Handwritten Digit Recognition
	4.4.1.1 Preparing Data
	4.4.1.2 Compiling Scripts
	Step 1 Interpret code.
	Step 2 Upload scripts.
	4.4.1.3 Training a Model
	Step 1 Create a training job.
	Step 2 Create a visualization job.
	Step 3 Upload scripts.
	4.4.1.4 Managing Models
	4.4.1.5 Deploying a Model

	4.4.2 Using MoXing-TensorFlow for Flower Recognition
	4.4.2.1 Preparing Data
	4.4.2.2 Compiling Scripts
	Step 1 Interpret code.
	Step 2 Upload scripts.
	4.4.2.3 Training a Model
	Step 1 Create a training job.
	Step 2 Create a visualization job.
	Step 3 Upload scripts.
	4.4.2.4 Managing Models
	4.4.2.5 Deploying a Model

	4.4.3 Using Native MXNet for Handwritten Digit Recognition
	Step 1 Upload the MNIST dataset to the OBS bucket using the method described in section 2.3.3. See the following figure.
	Step 2 Upload the code file train_mnist.py to the OBS bucket. For example, upload train_mnist.py to the modelarts-demo/builtin-algorithm/mxnet_mxnet folder in the OBS path, as shown in the following figure. The source code of train_mnist.py is stored ...
	Step 3 On the ModelArts console, choose Training Jobs and click Create.
	Step 4 After the training job is created, go to the corresponding job and wait until job running is complete. During the process, you can check logs and pay attention to the result. After the job is complete, you can view the result in Training Output...
	Step 5 Upload the config.json configuration file and customize_service.py inference code to the model folder in the OBS training output path, as shown in the following figure. Note that the configuration file name and inference code name cannot be cha...
	Step 6 Import a model and deploy it as a real-time prediction service. In the navigation pane, click Model Management. On the displayed page, click Import. See the following figure.

